GENETIC PATTERNING IN LUNG DEVELOPMENT AMS Fall Western Sectional Meeting

GENEVA PORTER

SAN DIEGO STATE UNIVERSITY APPLIED MATHEMATICS

NOVEMBER 9, 2019

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK THE DEVELOPING LUNG

(a) Branching at the pseudoglandular stage

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK THE DEVELOPING LUNG

(d) Branching at the pseudoglandular stage

(e) Gene proteins diffuse from lung surface

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK THE DEVELOPING LUNG

(g) Branching at the pseudoglandular stage

(h) Gene proteins diffuse from lung surface

FGF10 activates inhibits SHH

(i) Feedback loop between FGF10 and SHH genes

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK RESEARCH MOTIVATION

Applications to lung regeneration and disease research:

Congenital Diaphragmatic Hernias (CDH) causes hypoplastic lung development in the fetus. There is currently no treatment to encourage continued branching growth postpartum.

Figure: Left-sided CDH in infant

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK REACTION-DIFFUSION EQUATIONS

Auto-catalytic Reaction Model

$$X \xrightarrow[k_2]{k_1} F \qquad 2F + S \xrightarrow{k_3} 3F \qquad Y \xrightarrow{k_4} S$$

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK REACTION-DIFFUSION EQUATIONS

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK REACTION-DIFFUSION EQUATIONS

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK STABILITY WITHOUT DIFFUSION

$$\dot{F} = \gamma \left(\alpha - F + F^2 S \right)$$

$$\dot{S} = \gamma \left(\beta - F^2 S \right)$$

$$\xrightarrow{\text{Taylor Expansion}} \dot{W} = \gamma J_* W$$

Geneva Porter San Diego State University, Applied Mathematics

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK STABILITY WITHOUT DIFFUSION

$$\dot{\mathbf{F}} = \gamma \left(\alpha - \mathbf{F} + \mathbf{F}^2 \mathbf{S} \right) \\ \dot{\mathbf{S}} = \gamma \left(\beta - \mathbf{F}^2 \mathbf{S} \right)$$

 $\xrightarrow{\text{Taylor Expansion}} \dot{W} = \gamma J_* W$

Equilibrium point: $\left(\alpha + \beta, \frac{\beta}{(\alpha+\beta)^2}\right)$

Stable parameters: $\beta - \alpha < (\alpha + \beta)^3$

Geneva Porter San Diego State University, Applied Mathematics

$$\begin{split} \dot{F} &= \Delta_{\Gamma} F \gamma \left(\alpha - F + F^2 S \right) \\ \dot{S} &= \delta \Delta_{\Gamma} S \gamma \left(\beta - F^2 S \right) \end{split} \qquad \xrightarrow{\text{T.E.}} \qquad \dot{W} = D \Delta_{\Gamma} W + \gamma J_* W$$

$$\begin{split} \dot{F} &= \Delta_{\Gamma} F \gamma \left(\alpha - F + F^2 S \right) \\ \dot{S} &= \delta \Delta_{\Gamma} S \gamma \left(\beta - F^2 S \right) \end{split} \qquad \xrightarrow{\text{T.E.}} \qquad \dot{W} = D \Delta_{\Gamma} W + \gamma J_* W$$

Eigenvalue Problem: $\dot{W} = \lambda W$ and $\Delta_{\Gamma} W = -k^2 W$

$$\begin{split} \dot{F} &= \Delta_{\Gamma} F \gamma \left(\alpha - F + F^2 S \right) \\ \dot{S} &= \delta \Delta_{\Gamma} S \gamma \left(\beta - F^2 S \right) \end{split} \qquad \xrightarrow{\text{T.E.}} \qquad \dot{W} = D \Delta_{\Gamma} W + \gamma J_* W$$

Eigenvalue Problem: $\dot{W} = \lambda W$ and $\Delta_{\Gamma} W = -k^2 W$

$$W(\phi,\theta,t) = \sum_{m=0}^{\infty} \sum_{n_k^- \ge m}^{n_k^+} A_{mn} \cdot e^{\lambda t} \cdot Y_n^m(\phi,\theta)$$

with
$$A_{mn} = \frac{\int_0^{\pi} \int_{-\pi}^{\pi} W_* Y_n^m(\phi, \theta) \sin \phi d\theta d\phi}{\int_0^{\pi} \int_{-\pi}^{\pi} [Y_n^m(\phi, \theta)]^2 \sin \phi d\theta d\phi}$$

Geneva Porter San Diego State University, Applied Mathematics

$$\lambda W = -k^2 W + \gamma J_* W \longrightarrow \det(-Dk^2 + \gamma J - \lambda I) = 0$$

Geneva Porter 💫 San Diego State University, Applied Mathematics

$$\lambda W = -k^2 W + \gamma J_* W \longrightarrow \det(-Dk^2 + \gamma J - \lambda I) = O$$

$$\delta(\beta - \alpha) > (\alpha + \beta)^3 \quad \text{and} \quad \left(\delta(\beta - \alpha) - (\alpha + \beta)^3\right)^2 > 4\delta(\alpha + \beta)^4$$

$$\lambda W = -k^2 W + \gamma J_* W \longrightarrow \det(-Dk^2 + \gamma J - \lambda I) = O$$

$$\delta(\beta - \alpha) > (\alpha + \beta)^3 \quad \text{and} \quad \left(\delta(\beta - \alpha) - (\alpha + \beta)^3\right)^2 > 4\delta(\alpha + \beta)^4$$

(e) Delta regions for α and β constraints to induce instability

neva Porter San Diego State University, Applied Mathematics

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK EIGENVALUE SOLUTIONS

Isolate single k_c^2 such that $k_-^2 < k_c^2 = n(n+1) < k_+^2$

$$k^{2} = \frac{\delta(\beta - \alpha) - (\alpha + \beta)^{3} \pm \sqrt{[\delta(\beta - \alpha) - (\alpha + \beta)^{3}]^{2} - 4\delta(\alpha + \beta)^{4}}}{2\delta(\alpha + \beta)}$$

INTRODUCTION TURING REGIONS FINITE ELEMENTS FUTURE WORK EIGENVALUE SOLUTIONS

Isolate single k_c^2 such that $k_-^2 < k_c^2 = n(n+1) < k_+^2$

$$k^{2} = \frac{\delta(\beta - \alpha) - (\alpha + \beta)^{3} \pm \sqrt{[\delta(\beta - \alpha) - (\alpha + \beta)^{3}]^{2} - 4\delta(\alpha + \beta)^{4}}}{2\delta(\alpha + \beta)}$$

Geneva Porter San Diego State University, Applied Mathematics

$$\dot{F} - \Delta_{\Gamma}F = \gamma \left(\alpha - F + F^2 S\right)$$

Geneva Porter San Diego State University, Applied Mathematics

$$\dot{F} - \Delta_{\Gamma}F = \gamma \left(\alpha - F + F^2 S \right)$$

Multiply by test function, put into weak form:

$$\int_{\Omega} \left[(\dot{F} - \Delta_{\Gamma} F) \varphi_i \right] = \gamma \int_{\Omega} \left[(\alpha - F + F^2 S) \varphi_i \right]$$

$$\dot{F} - \Delta_{\Gamma}F = \gamma \left(\alpha - F + F^2 S\right)$$

Multiply by test function, put into weak form:

Integrate by parts, sum over domain:

$$\int_{\Omega} \left[(\dot{F} - \Delta_{\Gamma} F) \varphi_i \right] = \gamma \int_{\Omega} \left[(\alpha - F + F^2 S) \varphi_i \right]$$

$$\sum \left(\dot{f}\varphi_{j},\varphi_{i} \right) + \sum \left(f\nabla\varphi_{j},\nabla\varphi_{i} \right) = \gamma \left[\alpha \sum (\varphi_{i},\mathbf{1}) - \sum (f\varphi_{j},\varphi_{i}) + \sum (f^{2}\mathbf{s}\varphi_{j},\varphi_{i}) \right]$$

$$\dot{F} - \Delta_{\Gamma}F = \gamma \left(\alpha - F + F^2 S \right)$$

Multiply by test function, put into weak form:

Integrate by parts, sum over domain:

$$\int_{\Omega} \left[(\dot{F} - \Delta_{\Gamma} F) \varphi_i \right] = \gamma \int_{\Omega} \left[(\alpha - F + F^2 S) \varphi_i \right]$$

$$\sum \left(\dot{f}\varphi_{j},\varphi_{i} \right) + \sum \left(f\nabla\varphi_{j},\nabla\varphi_{i} \right) = \gamma \left[\alpha \sum (\varphi_{i},\mathbf{1}) - \sum (f\varphi_{j},\varphi_{i}) + \sum (f^{2}s\varphi_{j},\varphi_{i}) \right]$$

$$\mathbf{M} = \sum (\varphi_i, \varphi_j) \quad \mathbf{A} = \sum (\nabla \varphi_i, \nabla \varphi_j) \quad \mathbf{C} = \sum (\varphi_i, \mathbf{1})$$

$$\mathbf{M}\dot{f} + \mathbf{A}f = \gamma \left[\alpha \mathbf{C} - \mathbf{M}f + \mathbf{M}f^{2}\mathbf{s} \right]$$

$$\mathbf{M}\dot{f} + \mathbf{A}f = \gamma \left[\alpha \mathbf{C} - \mathbf{M}f + \mathbf{M}f^{2}\mathbf{s} \right]$$

IMEX scheme, first order backward Euler:

$$\frac{\mathbf{M}(f_{n+1}-f_n)}{\Delta t} + \mathbf{A}f_{n+1} = \gamma \left(\alpha \mathbf{C} - \mathbf{M}f_{n+1} + \mathbf{M}f_n^2 \mathbf{s}_n \right)$$

Geneva Porter San Diego State University, Applied Mathematics

$$\mathbf{M}\dot{f} + \mathbf{A}f = \gamma \left[\alpha \mathbf{C} - \mathbf{M}f + \mathbf{M}f^{2}\mathbf{s} \right]$$

$$\frac{\mathbf{M}(f_{n+1}-f_n)}{\Delta t} + \mathbf{A}f_{n+1} = \gamma \left(\alpha \mathbf{C} - \mathbf{M}f_{n+1} + \mathbf{M}f_n^2 \mathbf{s}_n \right)$$

Solve the linear system Ax=b:

$$\left[(\mathbf{1} + \gamma \Delta t) \mathbf{M} + \Delta t \mathbf{A} \right] f_{n+1} = \gamma \Delta t \left(\alpha \mathbf{C} + \mathbf{M} f_n^2 \mathbf{s}_n \right)$$

Code mode isolation algorithm

(l) 3D model of left lung

Geneva Porter San Diego State University, Applied Mathematics

10 / 10

(I) 3D model of left lung

- Code mode isolation algorithm
- Use second order temporal discretization scheme

(I) 3D model of left lung

- Code mode isolation algorithm
- Use second order temporal discretization scheme
- Examine model on the mesh of a human lung

(l) 3D model of left lung

- Code mode isolation algorithm
- Use second order temporal discretization scheme
- Examine model on the mesh of a human lung
- Solve on growing domain of developing lung

FURTHER READING

- A. MADZVAMUSE, "TIME-STEPPING SCHEMES FOR MOVING GRID FINITE ELEMENTS APPLIED TO REACTION-DIFFUSION SYSTEMS ON FIXED AND GROWING DOMAINS," JOURNAL OF COMPUTATIONAL PHYSICS, VOL. 214, NO. 1, PP. 239–263, 2006.
- L. MURPHY, C. VENKATARAMAN, AND A. MADZVAMUSE, "A COMPUTATIONAL APPROACH FOR MODE ISOLATION FOR REACTION-DIFFUSION SYSTEMS ON ARBITRATY GEOMETRIES," P. 26, 2016.
- MURRAY, J D, "MATHEMATICAL BIOLOGY II: SPATIAL MODELS AND BIOMEDICAL APPLICATIONS," P. 839, 2000.
- J. SCHNAKENBERG, "SIMPLE CHEMICAL REACTION SYSTEMS WITH LIMIT CYCLE BEHAVIOR," INSTITUTE FOR THEORETICAL PHYSICS, VOL. 81, NO. 3, PP. 389–400, 1979.
- A. M. TURING, "THE CHEMICAL BASIS OF MORPHOGENESIS," PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON, VOL. 237, NO. 641, PP. 37–72, 1952.

THANK YOU!

GPORTER@SDSU.EDU

GITHUB.COM/GENEVAPORTER