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The Developing Lung

(a) Branching at the
pseudoglandular
stage

(b) Gene proteins
di�use from lung
surface

(c) Feedback loop
between FGF10 and
SHH genes
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The Developing Lung
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The Developing Lung

(g) Branching at the
pseudoglandular
stage

(h) Gene proteins
di�use from lung
surface

(i) Feedback loop
between FGF10 and
SHH genes

Geneva Porter San Diego State University, Applied Mathematics 1 / 10



Introduction Turing Regions Finite Elements Future Work

Research Motivation

Applications to lung regeneration
and disease research:

Congenital Diaphragmatic Hernias
(CDH) causes hypoplastic lung
development in the fetus. There is
currently no treatment to
encourage continued branching
growth postpartum. Figure: Left-sided CDH in infant
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Introduction Turing Regions Finite Elements Future Work

Reaction-Diffusion Equations

Auto-catalytic Reaction Model

X
k1−−⇀↽−−k2

F 2 F + S k3−−→ 3 F Y k4−−→ S

+
Laplace-Beltrami Operator

∆Γu = ∇Γ · ∇Γu with ∇Γu = ∇u− (∇u · ~n)~n

=
Schnakenberg Equations on Surface

Ḟ = ∆ΓF + γ
(
α− F + F2S

)
Ṡ = δ∆ΓS+ γ

(
β − F2S

)
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Ḟ = ∆ΓF + γ
(
α− F + F2S

)
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Introduction Turing Regions Finite Elements Future Work

Stability Without Diffusion

Ḟ = γ
(
α− F + F2S

)
Ṡ = γ

(
β − F2S

) }
Taylor Expansion−−−−−−−−−−−→ Ẇ = γ J∗W

Equilibrium point:(
α + β, β

(α+β)2

)
Stable parameters:
β − α < (α + β)3

(a) Stability region for α and β
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Introduction Turing Regions Finite Elements Future Work

Analytic Solution

Ḟ = ∆ΓFγ
(
α− F + F2S

)
Ṡ = δ∆ΓSγ

(
β − F2S

) }
T.E.−−−→ Ẇ = D∆ΓW + γ J∗W

Eigenvalue Problem: Ẇ = λW and ∆ΓW = −k2W

W(φ, θ, t) =
∞∑
m=0

n+
k∑

n−k ≥m

Amn · eλt · Ymn (φ, θ)

with Amn =

∫ π
0
∫ π
−πW∗Ymn (φ, θ) sinφdθdφ∫ π

0
∫ π
−π[Ymn (φ, θ)]2 sinφdθdφ
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Introduction Turing Regions Finite Elements Future Work

Instability with Diffusion

λW = −k2W+γ J∗W −→ det(−Dk2+γ J−λI) = 0

δ(β −α) > (α+ β)3 and
(
δ(β − α)− (α + β)3

)2
> 4δ(α+ β)4

(c) Delta regions for α and β constraints to induce instability
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Introduction Turing Regions Finite Elements Future Work

Eigenvalue Solutions

Isolate single k2c such that k2− < k2c = n(n+ 1) < k2+

k2 =
δ(β − α)− (α + β)3 ±

√
[δ(β − α)− (α + β)3]2 − 4δ(α + β)4

2δ(α + β)

(f) n = 2 (g) n = 4 (h) n = 20
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Introduction Turing Regions Finite Elements Future Work

Spacial Discretization

Ḟ −∆ΓF = γ
(
α− F + F2S

)

Multiply by test
function, put
into weak form:

∫
Ω

[
(Ḟ −∆ΓF)ϕi

]
= γ

∫
Ω

[(
α− F + F2S

)
ϕi

]
Integrate by
parts, sum over
domain:

∑(
ḟϕj, ϕi

)
+
∑(

f∇ϕj,∇ϕi
)

=

γ
[
α
∑

(ϕi, 1)−
∑

(fϕj, ϕi) +
∑

(f 2sϕj, ϕi)
]

M =
∑

(ϕi, ϕj) A =
∑

(∇ϕi,∇ϕj) C =
∑

(ϕi, 1)
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Introduction Turing Regions Finite Elements Future Work

Time Discretization

Mḟ + Af = γ
[
αC−Mf +Mf 2s

]

IMEX scheme,
�rst order
backward Euler:

M(fn+1 − fn)

∆t
+ Afn+1 = γ

(
αC−Mfn+1 +Mf 2nsn

)
Solve the linear
system Ax=b:

[
(1+ γ∆t)M+ ∆tA

]
fn+1 = γ∆t

(
αC+Mf 2nsn

)
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Future Work

(l) 3D model of left lung

Code mode isolation
algorithm

Use second order temporal
discretization scheme
Examine model on the
mesh of a human lung
Solve on growing domain of
developing lung
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Thank You!

gporter@sdsu.edu

github.com/genevaporter
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