
Analytic Tools for the Finite Element Method
on Parabolic Equations

Geneva Porter, SDSU Spring 2020
Numerical Partial Differential Equations
Dr. Uduak George, Applied Mathematics

14 May, 2020

The finite element method (FEM) is a technique used to solve many dif-
ferent types of partial differential equations (PDE) on a variety of meshes.
Almost always implemented numerically, the FEM has several practical ap-
plications in applied mathematics. This report will detail one particular
application, solving a time-dependent parabolic reaction-diffusion equation
on a surface geometry, and discuss ways in which the theoretical application
is valid. The proceeding error analysis will examine the well-posedness, con-
sistency, convergence, and stability of our Schnakenberg Equation model on
the surface of a sphere.

1 The Surface Finite Element Method

Solving the Schnakenberg equations using the finite element method uses
the Laplace-Beltrami operator for a 2D domain in a 3D space. The dis-
cretized space is represented numerically by a linear system of matrices, and
for parabolic problems, the square matrices are conveniently formatted as
symmetric and positive definite. There are several analyses on this process
already [1], so only a brief overview will be given here.

To begin, the following is the system of differential equations on the 2D
surface domain Γ embedded in a 3D space:

∂u

∂t
−∆Γu = γ f(u, v)

∂v

∂t
−δ∆Γv = γ g(u, v) with u = v = 0 on ∂Γ

(1)

1

We treat this as a closed system; therefore there in no flux through the
surface. The first step in applying the surface finite element method is to
multiply the equations by a test function. The goal of the test function is to
give a value to one neighborhood in the discretized domain and return zero
for all other neighborhoods. The test function ϕ must satisfy:

ϕ
∂u

∂t
− ϕ∆Γu = ϕγf(u, v) and ϕ

∂v

∂t
− ϕδ∆Γv = ϕγg(u, v) (2)

We continue by using the weak formulation method by integrating:∫
Γ

ϕ
∂u

∂t
−
∫

Γ

ϕ∆Γu =

∫
Γ

γϕf(u, v)

∫
Γ

ϕ
∂v

∂t
−
∫

Γ

ϕδ∆Γv =

∫
Γ

γϕg(u, v)

(3)
Note that we can use integration by parts here, and substitute a more

easily computed term for ∆Γ in this context. Green’s Theorem states:∫
δΓ

a · ∇Γb =

∫
Γ

a ·∆Γb+

∫
Γ

∇Γa · ∇Γb (4)

Since the flux on the boundary ∂Ω is zero, we can rewrite (3) as:∫
Γ

ϕ
∂u

∂t
+

∫
Γ

∇Γϕ·∇Γu = γ

∫
Γ

ϕf(u, v) and

∫
Γ

ϕ
∂v

∂t
+δ

∫
Γ

∇Γϕ·∇Γv = γ

∫
Γ

ϕg(u, v)

(5)
When considering that our domain is not continuous but a mesh of count-

able elements, we can represent Γ as the discretized space T with elements
K. In this case, T is a representation of Γ that is partitioned into non-
overlapping quadrilaterals. Using this notation, we approximate the system
as: ∑

K∈T

∫
K

ϕ
∂u

∂t
+
∑
K∈T

∫
K

∇Kϕ · ∇Ku = γ
∑
K∈T

∫
K

ϕf(u, v)

∑
K∈T

∫
K

ϕ
∂v

∂t
+ δ

∑
K∈T

∫
K

∇Kϕ · ∇Kv = γ
∑
K∈T

∫
K

ϕg(u, v)

(6)

Because our domain is a surface, we must use the tangential gradients
when computing the spatial integral (as opposed to the standard gradients
for a bulk volume). Recall that the matrices here are symmetric and positive
definite. In this context, the tangential gradient is defined for each variable
as:

∇Ku = DxKG
−1
K ∇u ∇Kv = DxKG

−1
K ∇v

2

∇Kϕ = DxKG
−1
K ∇ϕ = ∇ϕTG−1

K DxTK

Furthermore, we can express the spatial elements in terms of a reference
element K̂ = [0, 1]2, which is beneficial for efficiency in numerical implemen-
tation. The reference element is derived from the discretization of the domain
mesh. Since our surface mesh is made of quadrilaterals, the reference element
will be a unit square. The discretized space can be expressed in terms of the
reference element and simplified using the relation Gk = DxTKDxK .

∫
K

∇Kϕ · ∇Ku =

∫
K̂

(
∇ϕTG−1

K DxTK
)
DxKG

−1
K ∇u =

∫
K̂

∇ϕTG−1
K ∇u∫

K

∇Kϕ · ∇Kv =

∫
K̂

(
∇ϕTG−1

K DxTK
)
DxKG

−1
K ∇v =

∫
K̂

∇ϕTG−1
K ∇v

(7)

It is prudent to note that this process is referred to as triangulation,
named from the standard practice in computational mesh generation, which
creates surfaces with triangular elements.

The triangulation process lends itself to numerical representation in vec-
tor form. Vertices on the mesh are assigned to positions in a vector, and can
be solved as a linear system. With the discretization of space, the variables
u and v, along with the test function ϕ, must in turn be discretized. Below
is our discretized approximation for u and v, with new variables explained
below:

u ≈ uK =
∑
j

ϑjUj v ≈ vK =
∑
j

ϑjVj (8)

We now introduce the basis function ϑj. The basis function is similar
to the linear algebra standard: a piecewise polynomial whose purpose is to
assign a value to a vertex with index j, interpolate values for the vertices
that share an edge with vertex j, and return zero for all other vertices. We
create a different basis function for each node on the mesh. In “classical”
FEM formulations, low-degree polynomials are used for each basis function
[2]. Predictably, higher degree polynomials result in both increased accuracy
and increased computing time. For this thesis, a second degree polynomial
will be used for each basis function. Uj and Vj are unknown coefficients,
which are treated as variables.

The deal.ii library produces a triangulated model with a few simple com-
mands. The use of tangential gradients for surface calculations is more te-
dious, requiring several nested loops through each vertex on the mesh.

3

Our spatially discretized system follows (with the tangential gradient no-
tation omitted for clarity):∑
K∈T

∑
j

∫
K

ϕi · ϑj
[
∂Uj
∂t

]
+
∑
K∈T

∑
j

∫
K

∇Kϕi · ∇Kϑj [Uj] = γ
∑
K∈T

∑
j

∫
K

ϕifK(Uj, Vj)

∑
K∈T

∑
j

∫
K

ϕi · ϑj
[
∂Vj
∂t

]
+ δ

∑
K∈T

∑
j

∫
K

∇Kϕi · ∇Kϑj [Vj] = γ
∑
K∈T

∑
j

∫
K

ϕigK(Uj, Vj)

(9)
With these approximations, the test functions ϕi can have a solution for

the system at each vertex. For this report, it will be sufficient to state that a
unique solution to the above system exists (more on this in future sections).
A detailed explanation can be found in [3], which states that the proof is a
direct application of the Lax-Milgram Theorem. For ease of communication,
we will simplify the notation here as follows:∑

K∈T

∑
j

∫
K

x · y =
(
x, y

)
Now our system is more easily examined when written as(

ϕi, ϑj

) ∂Uj
∂t

+
(
∇Kϕi,∇kϕj

)
Uj = γ

(
ϕi, fK(Uj, Vj)

)
(
ϕi, ϑj

) ∂Vj
∂t

+ δ
(
∇Kϕi,∇kϕj

)
Vj = γ

(
ϕi, gK(Uj, Vj)

) (10)

Here, it is useful to explain the expansion of the functions fK and gK , the
discretized versions of the reaction equations. Because the solutions are in
vector format, we must treat the nonlinear term piecewise; that is, multiply
each vector term according to its position in the vector.

Since the basis functions need only satisfy the linear system, we want it
to be as simple as possible. To accomplish this, it is not necessary to create
nonlinear terms for the basis function itself. We need only use it in the first
degree when attached to the nonlinear term. For example, using ϑ3

j as the
basis function term for U2

j Vj is not strictly necessary; using ϑj alone will
suffice. In addition, α and β are transformed into a and b, which are simply
mono-valued vectors corresponding to the size of the basis function vectors.
We can now expand the fK and gK terms as follows:

4

(
ϕi, fK

)
=

(
ϕi, α− uK + u2

KvK

)
=
(
ϕi, a

)
−
(
ϕi, ϕj

)
· Uj +

(
ϕi, ϕj

)
· U2

j Vj(
ϕi, gK

)
=

(
ϕi, β − u2

KvK

)
=
(
ϕi,b

)
−
(
ϕi, ϕj

)
· U2

j Vj

(11)
Note that the notation U2

j Vj represents the nonlinear term vectors multiplied
piecewise. Rewriting Equation (10) using the substitutions above yields:

(
ϕi, ϑj

) ∂Uj
∂t

+
(
∇Kϕi,∇kϕj

)
Uj = γ

[(
ϕi, a

)
−
(
ϕi, ϕj

)
· Uj +

(
ϕi, ϕj

)
· U2

j Vj

]
(
ϕi, ϑj

) ∂Vj
∂t

+ δ
(
∇Kϕi,∇kϕj

)
Vj = γ

[(
ϕi,b

)
−
(
ϕi, ϕj

)
· U2

j Vj

]
(12)

We can now use matrix notation for each summation, using the following
terms:

M = (ϕi, ϕj) L = (∇ϕi,∇ϕj) A = (ϕi, a) B = (ϕi,b)

Common nomenclature dictates that M is the mass matrix, L is the
Laplace matrix, and A and V are the forcing term vectors. The simple form
is now:

M · d
dt

[Uj] + L · Uj = γ(A−M · Uj + M · U2
j Vj)

M · d
dt

[Vj] + δL · Vj = γ(B−M · U2
j Vj)

(13)

The spatial discretization is now complete. We can use these results to
plug into the temporal discretization, which will be discussed in the next
section. We will use the following generalized substitutions:

u→M · Uj v →M · Vj
∆u→ −L · Uj ∆v → −L · Vj

α→ A β → B

u2v →M · U2
j Vj

(14)

5

2 Implicit-Explicit Time Stepping Scheme

The following time discretization will use both implicit and explicit strate-
gies. There is significant evidence that using a combination of implicit and
explicit methods improves the stability and decreases the error in temporal
discretization schemes [4]. Once we assemble the linear system, we will sub-
stitute the spatial discretization terms discussed in Section 1. To begin, we
recall our system of equations:

∂u

∂t
−∆u = γ (α− u+ u2v) ,

∂v

∂t
− δ∆v = γ (β − u2v) (15)

First, let’s examine the first equation in terms of u. We apply a first order
implicit Euler method to the time derivative, with the exception of the non-
linear term. This is one of many forms known as the Implicit-Explicit, or
IMEX, discretization scheme. Note that k is the time step length and N is
the time step index number.

uN+1 − uN
k

−∆uN+1 = γ (α− uN+1 + u2
NvN) (16)

Separating the unknown values with un we get

uN+1 + k (γuN+1 −∆uN+1) = kγ
(
α + u2

NvN
)

+ uN (17)

From here, we can solve the equation for v using a slightly more implicit
scheme. This is possible because when solving this system numerically, we
can solve one equation before the other for each time step. Therefore, the
value uN will be known when solving the equation for v. This yields:

vN+1 − vN
k

− δ∆vN+1 = γ(β − u2
N+1vN) (18)

Again, separating unknown terms yields

vN+1 − k (δ∆vN+1) = kγ
(
β − u2

N+1vN
)

+ vN (19)

In operator form, the system simplifies to

[1 + k (γ −∆·)]uN+1 = kγ
(
α + u2

NvN
)

+ uN

[1− kδ∆·] vN+1 = kγ
(
β − u2

NvN
)

+ vN
(20)

6

Using this combination of implicit and explicit approaches allows a mod-
erately high level of accuracy without a significantly complex scheme. We
can apply this temporally discretized system to the spatially discretized re-
sult of the finite element method linear system by substituting the results
to form a linear system. Combining Equation (20) and the substitutions in
(14), we get:

[(1 + kγ)M + kL]UN+1 = kγ
(
A + MU2

NVN
)

+ MUN

[M + kδL]VN+1 = kγ
(
B−MU2

N+1VN
)

+ MVN
(21)

We now have a linear system of the form Ax = b. The deal.ii library has
a built-in linear solver, and we utilize the solver’s conjugate gradient method
for each timestep. For simplicity in further discussion, we will represent the
system matrix (left-hand side) and the right hand side matrix as follows:

A =

(
(1 + kγ)M + kL

M + kδL

)
b =

(
kγ (A + MU2

NVN) + MUN
kγ
(
B−MU2

N+1VN
)

+ MVN

)
(22)

3 The Spherical Domain

Before examining the measures of error for consistency, convergence, and
stability, it is useful to establish some details about the domain in question.
We will examine an arbitrary pattern on the surface of the sphere for various
mesh densities and time step intervals. Each mesh was created using deal.ii’s
mesh library. In addition, we will be using solution values for u rather than
v for the following analyses. The IMEX scheme used grants significantly
more accuracy to v, so for fairness we will measure the system based on the
maximum error.

The mesh itself has a base shape of a cube, and can be refined an arbitrary
number of times within a spherical manifold. Upon each refinement, the
number of cells in the mesh quadruple, and the maximum diameter among
all the cells, h, reduces by about half. We will use h2 to denote the maximum
diameter after two refinements from a cube, h3 for three refinements, et.
cetera. Figure 1 below shows the four mesh densities we will be working
with for the error analysis, while Table 1 details the numerical information
on each mesh, including number of cells and degrees of freedom. Not pictured
is the h6 sphere, which will only be used as a domain for an exact solution
facsimile.

7

Figure 1. Sphere meshes with density refinements h2 (top left), h3

(top right), h4 (bottom left), and h5 (bottom right)

Table 1. Spherical Mesh Density Values

h2 h3 h4 h5 h6

Number of Cells 96 384 1,536 6,144 24,576
Degrees of Freedom 386 1538 6,146 24,578 98,306
Maximum Diameter 0.541196 0.277048 0.139239 0.0697337 0.034877

Some visualizations to follow only show data up to t = 0.5. It is important
to establish that data collected up to this point is sufficient to show steady-
state dynamics. To do this, we will observe a standard L2 norm, as follows:

8

||uN+1 − uN || =

(
dimu∑
i

(uN+1 − uN)

)2

(23)

Figure 2 shows the differences in L2 norms for varying mesh densities,
each taken using a timestep length of 10−3. The norm takes the difference
between time steps uN+1 − uN as the argument, where i = 1, 2, 3, ... dimu.
We can see that as the mesh density increases (or, as the diameter h halves),
the steady state norm value decreases by about half.

Figure 2. L2 Norm for spheres of various mesh densities.

4 Well-Posedness

We can define a well-posed problem as having three characteristics:

1. A solution for the problem exists

2. The solution is unique

3. The solution changes continuously as the boundary values and initial
conditions change.

To verify that the Schnakenberg system meets these requirements, observe
the given equations with their boundary conditions and initial values using

9

the variables t, φ, and θ (note that r = 1 is constant, since we are only
examining the surface):

u̇−∆Γu = γf(u, v) f(u, v) = α− u+ u2v

v̇ − δ∆Γv = γg(u, v) g(u, v) = β − u2v with

u(t, π, θ) = u(t,−π, θ) u(t, φ, π) = u(t, φ,−π)

v(t, π, θ) = v(t,−π, θ) v(t, φ, π) = v(t, φ,−π)

and u0 = α + β v0 =
β

(α + β)2

(24)

This system is a parabolic reaction-diffusion system, which is guaranteed
to be well-posed so long as there are at least 2 boundary conditions and the
spatial derivative is of the second degree [2]. We can see that there are indeed
two boundary conditions and that the spatial derivatives ∆Γu and ∆Γv are,
by definition, of the second degree. We know the system is parabolic because
it follows the form:

A1uxx + 2B1uxt + C1utt +D1ux + E1ut + F1 = 0

A2vxx + 2B2vxt + C2vtt +D2vx + E2vt + F2 = 0
(25)

Here, the spatial derivatives ∆Γu and ∆Γu are represented by uxx and
vxx, respectively. The time derivatives u̇ and v̇ are likewise represented by
ut and vt. For both equations, the coefficients corresponding to B and C are
equal to zero, so the criteria for parabolic classification B2−AC = 0 is met.
Since the problem is well-posed, we can continue to make other important
inferences later on.

5 Consistency

For FDM, consistency occurs when mesh cells and time step size decrease,
the truncation error approaches zero. In other words, the discrete system
should be a “good” approximation of the partial differential equation system.
Normally we would determine consistency by showing:

Pφ− Pk,hφ→ 0 as k, h→ 0 (26)

However, for nonlinear time dependent PDEs, we can measure consistency
by examining the local truncation error [5]. For the system in question, we

10

solve each time step via a linear equation. Recall the linear system we set
up using the FEM-IMEX scheme:

Ax = b (27)

Here x = (uN+1, vN+1)T , and b is a function of (uN , vN). To find the trun-
cation error, we apply a simple check after solving the system:

Truncation error = ||b−Ax|| (28)

The truncation error is already an integral part of the algorithm for solv-
ing the linear system (in this case, the conjugate gradient method). We can
apply a constraint that forces the solver to continue enumerating until the
solution gives a truncation error below the desired amount. This feature also
allows us to easily control the accuracy to order p, so long as we constrain
the truncation error as being less than both O(kp) and O(hp).

We define order p by the following inequality:

||b−Ax|| / hp1 + kp2 (29)

We can then say that the numerical scheme is consistent if it is accurate
of order p = (p1, p2) > 0. For this analysis, we constrained the conjugate
gradient algorithm to iterate until the truncation error was less than 10−20.
Therefore, we can achieve an arbitrarily high accuracy order so long as we are
willing to sacrifice the computing time needed to achieve it. Since we keep
the truncation error at 10−20 for all computational runs, all permutations of
h and k in the proceeding analysis are consistent with an order of accuracy
of at least (2,2).

6 Convergence

While consistency examines the discretization of a system, convergence im-
plies that the solution to the discrete system is a “good” approximation to
the solution of the partial differential equation system. Now, we cannot mea-
sure convergence in the traditional way, because it requires knowledge of the
exact solution. The exact solution to the Schnakenberg system on the surface
of a spherical domain in unknown. However, we can create a facsimile of the
exact solution by producing an output using the smallest time step and cell
size that is computationally feasible.

11

If we call this exact solution facsimile WE while our approximate solution
is Wh, then we can say that the solution converges given that the following
criteria is satisfied: ∣∣∣∣∣∣Wh −WE

∣∣∣∣∣∣ / hq1 + kq2 (30)

However, because of computational limitations, it was not feasible to
calculate the difference Wh −WE for each time step. Instead, we examined
the convergence rate based on the following inequality:

∣∣∣ ||Wh|| − ||WE||
∣∣∣ ≤ ∣∣∣ ||Wh −WE||

∣∣∣ / |hq1 + kq2| = hq1 + kq2 (31)

Using
∣∣ ||Wh|| − ||WE||

∣∣ is a valid measure so long as q = (q1, q2) > 0, then
the solution converges at rate q. The norms are the same as the one defined
in (23). We can also show this graphically. Figure 3 below shows how the
convergence rates change for varying h and k. Note that each successive
graph (from right to left) is zoomed in by a factor of 10 for the y-axis.

Figure 3. Convergence norms for varying h and k

Convergence norm values are shown in Table 2 below, for various values
of h and k. Table 3 shows the maximum convergence rate for each pair
of values (h, k). We can confidently say that all models converge to some
degree. Note that convergence rates steadily increase as k decreases.

12

Table 2. Convergence Norm Values For Various h and k

h2 h3 h4 h5

k = 10−3 1.9e-3 1.3e-3 5.0e-3 1.0e-2
k = 10−4 1.8e-4 1.2e-4 4.9e-4 1.0e-3
k = 10−5 1.8e-5 1.2e-5 4.9e-5 1.0e-4

Table 3. Convergence Rates For Various h and k

h2 h3 h4 h5

k = 10−3 (10, 10) (5, 5) (2, 2) (1, 1)
k = 10−4 (14, 14) (7, 7) (3, 3) (2, 2)
k = 10−5 (17, 17) (8, 8) (5, 5) (3, 3)

7 Stability

Stability in a finite difference system demands that the solution is persistent,
that is, small perturbations or errors (such as round-off errors) in the data
disappear over time. In addition, it implies that a change of the initial
and boundary data leads to a comparable change in the numerical solution.
This concept is identical for the finite element method. In fact, the formal
definition tells us that our solution must be stable, since it is consistent and
converges [6]:

Theorem 1 (Lax-Richtmyer). Let Wh be the solution of a numerical method
consistent with a well-posed time-dependent problem; in particular, assume
that it is accurate of order p > 0. Then, if the numerical method is stable,
its solution converges with pth-order convergence rate,∣∣∣∣∣∣Wh −WE

∣∣∣∣∣∣ / n∑
m=0

k · ||b−Ax|| / hp1 + kp2 , tn ∈ [0, T].

We have shown that the system and solution is consistent and convergent.
Therefore, the FEM-IMEX approach is stable. We can confidently use this
model for research into other applications.

13

References

[1] Gerhard Dziuk and Charles M Elliott. A Fully Discrete Evolving Sur-
face Finite Element Method. SIAM Journal on Numerical Analysis,
50(5):2677–2694, jan 2012.

[2] N. Tuncer, Anotida Madzvamuse, and A.J. Meir. Projected finite ele-
ments for reaction–diffusion systems on stationary closed surfaces. Ap-
plied Numerical Mathematics, 96:45–71, oct 2015.

[3] Gerhard Dziuk and Charles M Elliott. Finite element methods for surface
PDEs. Acta Numerica, 22:289–396, may 2013.

[4] Anotida Madzvamuse. Time-stepping schemes for moving grid finite el-
ements applied to reaction–diffusion systems on fixed and growing do-
mains. Journal of Computational Physics, 214(1):239–263, may 2006.

[5] A Bonito, R H Nochetto, and M S Pauletti. Geometrically Consistent
Mesh Modification. SIAM Journal on Numerical Analysis, 48(5):1877–
1899, jan 2010.

[6] J D Murray. Mathematical Biology II: Spatial Models and Biomedical
Applications. Springer, third edition, 2000.

14

