
MODELING FIBROBLAST GROWTH FACTOR 10 EXPRESSION IN

EMBRYONIC MOUSE LUNGS

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Applied Mathematics

with a Concentration in

Biomathematics

by

Geneva RoseEmma Porter

Summer 2020

SAN DIEGO STATE UNIVERSITY

The Undersigned Faculty Committee Approves the

Thesis of Geneva RoseEmma Porter:

Genetic Patterning in Lung Development

Uduak Z. George, Chair
Department of Mathematics and Statistics

Joseph Mahaffy
Department of Mathematics and Statistics

Hakan Töreyin
Department of Electrical and Computer Engineering

Approval Date

iii

Copyright c© 2020

by

Geneva RoseEmma Porter

iv

DEDICATION

To Bill

v

All models are wrong, but some are useful.

– George Box

vi

ABSTRACT OF THE THESIS

Genetic Patterning in Lung Development
by

Geneva RoseEmma Porter
Master of Science in Applied Mathematics with a Concentration in Biomathematics

San Diego State University, 2020

Mammalian lungs develop through a process of repetitive branching of epithelial
structures. This process begins during the embryonic stage of development and is vital
for the formation of the tree-like lung airways. Findings from wet-lab experiments
performed using murine lungs have identified fibroblast growth factor 10 (FGF10) as a
key regulator of lung formation. Spatiotemporal expression of FGF10 is highly
stereotyped. FGF10 is expressed at the lung surface, distal to the branching epithelial
structures, and plays a key role in regulating the branching of lung epithelial structures.
In the absence of FGF10, murine lungs do not undergo branching. Despite enormous
progress in understanding the mechanisms that control epithelial lung branching, the
factors that determine the spatiotemporal expressions of FGF10 are not well
understood. Here we propose and implement a new method to study FGF10 expression
at the lung surface using a system of reaction-diffusion equations. The numerical
approximation of the model equations is carried out using the surface finite element
method. Using linear stability theory, we validate numerical simulation results on a
unit sphere. Simulations of FGF10 expression are performed on a lung geometry
segmented from three-dimensional confocal microscopy images. Simulated patterns for
FGF10 expression are consistent with findings from wet-lab experiments. In particular,
our model identifies the lung surface area, a previously unknown factor, as one of the
main regulators of FGF10 expression in embryonic lungs.

vii

TABLE OF CONTENTS

PAGE

ABSTRACT .. vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

ACKNOWLEDGMENTS . xiii

CHAPTER

1 Background and Motivation . 1

1.1 Introduction . 1

1.2 Lung Branching Morphogenesis . 2

1.3 Genetic Cycling . 6

1.4 Research Goals . 7

2 Modeling Fibroblast Growth Factor 10 Expression . 9

2.1 Reaction-Diffusion Models . 9

2.2 Nondimensionalization . 10

2.3 Surface Reaction-Diffusion Model . 11

2.4 Steady-State Analysis . 11

2.5 Turing Instability Regions . 15

2.6 Analytical Solutions on a Sphere. 18

3 Numerical Approximation of the Model Equations . 21

3.1 The Surface Finite Element Method . 21

3.1.1 Mesh Discretization . 22

3.1.2 Basis Functions. 24

3.1.3 Notation Simplification . 25

3.2 Implicit-Explicit Time Stepping Scheme . 26

3.3 Adaptive Time Stepping . 28

3.4 deal.II Algorithm Details . 29

3.5 Wavenumber Pattern Replication . 30

4 Numerical Simulations of the Model on a Unit Sphere . 33

4.1 The Spherical Domain . 33

viii

4.2 Well-Posedness and Stability . 35

4.3 Consistency . 36

4.4 Convergence . 37

4.5 Simulation Errors . 39

5 Fibroblast Growth Factor 10 Expression On a Growing Domain 40

5.1 Pattern Replication On a Sphere . 40

5.2 Growing Domain Models . 43

5.3 Lung Mesh Geometry . 46

5.4 FGF10 Patterns on a Growing Lung. 48

6 Murine Lung Applications . 51

6.1 Initial Conditions. 51

6.2 Modeling Stages of Development. 51

6.3 Discussion of Results . 55

6.4 Conclusion . 59

BIBLIOGRAPHY .. 60

APPENDIX

C++ Code Using deal.ii . 63

ix

LIST OF FIGURES

PAGE

1.1 Human lung development stages during weeks 4 to 24. (a) Embry-
onic stage: major airway are formed (weeks 4-8). (b) Pseudoglan-
dular stage: bronchial tree is formed (weeks 6-18). (c) Canalicular
stage: epithelial differentiation phase (weeks 16-24). Figure adapted
with permission from the British Lung Foundation, [How children’s
lungs grow, British Lung Foundation, https://www.blf.org.uk, Ac-
cessed 2020-02-13 (2019)]. 4

1.2 An illustration of three branching types that occur during lung de-
velopment. Domain branching occurs when cellular growth is rapid,
quickly forming the foundational structure of the lung airways. Pla-
nar bifurcation is on a smaller scale, and occurs at the very tip of
the epithelial bud. We focus our examination here. Orthogonal bi-
furcation determines when the lung structure rotates the branching
orientation, forming 3D structures. Figure adapted with permission
from Nature, [R. J. Metzger, O. D. Klien, G. R. Martin, and M. A.
Krasnow, The branching programme of mouse lung development,
Nature, 453 (2008), pp 745–750]. 4

1.3 The proposed mechanism by which pattern formation on the surface
of the lung may influence branching via distribution of FHF10 at
key growth points. 5

1.4 Scans of a murine lung epithelial bud during the pseudoglandu-
lar stage. Notice the flattening and migration of cells to form
new branches at the top edges of the bud (left to right). Fig-
ure adapted with permission from Developmental Dynamics, [C.
Schnatwinkel and L. Niswander, Multiparametric image analysis
of lung-branching morphogenesis, Developmental Dynamics, 242
(2013), pp. 622–637]. 5

1.5 Diagram of the major parts of the murine lung. Figure adapted
with permission from Academic Press, [M. J. Cook, The Anatomy
of the Laboratory Mouse, Academic Press, 1965]. 6

1.6 Simple diagram of the auto-catalytic interaction between FGF10
and SHH. 7

x

2.1 Stability dynamics for the model system without diffusion. (a) The
stability regions for parameters α and β. (b) Phase plane with
α = 0.2 and β = 1.2. Note that the parameters are in the stable
region, thus the phase lines converge to the equilibrium. (c) Phase
plane with α = 0.1 and β = 0.9. Note that the parameters are
outside the stable region, thus the phase lines diverge from the
equilibrium. 14

2.2 Instability regions for varying δ in the model system when diffusion
is present. 17

2.3 Eigenfunctions of spherical harmonics on the surface of a sphere 20

3.1 Close-up of polygonal lung mesh with quadrilateral elements. The
yellow region represents a patch of cells that share a node (red) as
one of their vertices (blue). 22

3.2 Example visualization of the reference element under isoparametric
mapping to a quadrilateral on a discretized mesh. Figure adapted
with permission from ETH Zurich Universitatstrasse, [P. Arbenz,
Lecture notes for Introduction to finite elements and sparse linear
system solving, September 2017.] . 23

4.1 Sphere model meshes with various cell densities. (a) h2, (b) h3, (c)
h4, (d) h5. 34

4.2 Numeric Scheme L2 norm using time step 10−3 for spheres of various
mesh densities. 35

4.3 Numeric Scheme convergence norms over time for varying spatial
discretization (h) and time step (k) units. 38

5.1 Difference norms for FGF10 on spheres of radii 1, 2, and 4, with
γ = 100. (a) View of L2 norm up to t = 1. (b) Close-up showing
differences in oscillation of solutions. 42

5.2 Reproduction of a k2 = 20 pattern solution for FGF10 on different-
sized spheres. (a) r = 0.5 and γ = 160, (b) r = 1 and γ = 41.98,
(c) r = 2 and γ = 11.10. 43

5.3 Simulation data fit to the power model γ = arb from x data points 43

5.4 Starting and ending u solution patterns for growing domain simu-
lation using α = 0.1, β = 0.9, δ = 10, and γ = 40. (a) r = 1, (b) r
= 2. 44

5.5 Comparison of patterns on a growing and static sphere. (a) Patterns
on a growing sphere with the radius increasing from r = 1 to r =
2, while keeping γ constant. (b) Patterns on a static sphere with γ
increasing from γ = 10 to γ = 40, while keeping the radius constant 45

xi

5.6 Approximate representation of how the lung mesh triangulation sur-
face is subdivided using the Catmull-Clark method. 46

5.7 Full view of the murine lung mesh used for this model, including
interior epithelial branch structure. 47

5.8 Pattern correlation between lungs using parameters α = 0.1, β =
0.9, and δ = 10. (a) Varying lung size from 1x to 4x volume with γ
fixed at 200. (b) Fixed lung size at 4x volume with γ varying from
75 to 200.. 50

6.1 A comparison between experimental and simulated FGF10 distribu-
tion at E12.5 and E13.5 in the murine lung. (a) FGF10 distribution
at E12.5. Dark green indicates areas where FGF10 is more highly
concentrated. (b) Model 2x lung at γ = 75. Green indicates FGF10
concentrated areas. (c) FGF10 distribution at E13.5. Purple indi-
cates areas where FGF10 is more highly concentrated. (d) Simu-
lated 2x lung at γ = 1500. Green indicates FGF10 concentrated
areas. [T. Volckaert, A. Campbell, E. Dill, C. Li, P. Minoo, and
S. DeLanghe, Localized Fgf10 expression is not required for lung
branching morphogenesis but prevents differentiation of epithelial
progenitors, Development (Cambridge), 140 (2013), pp. 3731–3742.] 53

6.2 Model solutions on 2x lung meshes for γ = 50 to γ = 700 . 54

6.3 Model solutions on 2x lung meshes for γ = 800 to γ = 1500. 55

6.4 Model solutions on 2x lung meshes for γ = 135 to γ = 170 . 57

6.5 Model solutions on 2x lung meshes for γ = 1625 to γ = 1700 58

xii

LIST OF TABLES

PAGE

2.1 Parameter Constraints For Turing Instabilities. 18

3.1 Perturbations from Steady-State Initial Conditions . 30

3.2 Possible Parameters for the First 6 n Model Eigenvalues. 31

3.3 A Comparison Of Numeric and Eigenfunction Solutions For the
Model On the Surface of a Sphere. 32

4.1 Sphere Model Mesh Density Values . 34

4.2 Numeric Scheme Convergence Norm Values For Various Spatial and
Temporal Parameters. 38

4.3 Numeric Scheme Convergence Rates For Various For Various Spatial
and Temporal Parameters. 38

5.1 Experimental and Analytic γ For the k2 = 20 Pattern On Spheres 43

5.2 Patterns on Lungs of Varying Sizes (α = 0.1, β = 0.9, and δ = 10) 49

xiii

ACKNOWLEDGMENTS

Thank you to my advisor and teacher, Dr. Uduak George, for providing

feedback, guidance, and encouragement through this process. Thanks also to John

Morgan, for being a source of kinship and humor for many long hours in the lab.

Finally, I would like to thank my family, who gave me the gifts of creativity, academic

integrity, and unconditional love. Without such support, I would surely have lost my

way.

1

CHAPTER 1

Background and Motivation

Before exploring a mathematical model for Fibroblast Growth Factor 10

expression in embryonic mouse lungs, we examine several important ideas in physiology

and theoretical biology. Specifically, we discuss morphogenesis in developmental

biology, lung growth physiology in both mice and humans, and gene proteins that are

believed to regulate such processes.

1.1 Introduction
In 1952, Alan Turing published his highly influential work The Chemical Basis

of Morphogenesis [36], which changed our understanding of theoretical biology. Turing

discussed how patterns can arise from chemical disturbances in biologically

homogeneous systems. He states that phenomena such as skin pigmentation patterns

can be explained by chemical reaction-diffusion systems occurring during the embryonic

stage of development.

Turing suggests that deviations from homogeneity during embryonic

development are needed to spark morphogenesis and form organs, limbs, and skin

patterns. He also noted that these disturbances can be described as unstable equilibria;

a small deviation from the homogeneous state will interrupt the system from developing

uniformly. He noted that such equilibria are not observed to exist per se in nature, but

rather occur when the disturbance in a system causes a stable equilibrium to become

unstable. This phenomenon is known as a Turing Instability, and is observed in

mathematical systems with the addition of a diffusion term.

Several notable works have since adapted and expanded Turing’s model

[14, 19, 17]. This thesis will use the proposed by Schnakenberg in his 1979 work Simple

Chemical Reaction Systems With Limit Cycle Behavior [32] to study molecular

patterning during embryonic lung development. The Schnakenberg model, also known

as the activator-depletion model, is characterized by the kinetics of two reacting

morphogens exhibiting auto-catalytic behavior.

We will apply Turing’s theory and a variation of Schnakenberg’s model to

branch patterning in the developing lung. Lung branching morphogenesis is a complex

process that begins at the embryonic stage of development. In murine lungs, three

different branching types have been identified: domain branching, planar bifurcation

2

and orthogonal bifurcation [24]. How the lung regulates branching morphogenesis is not

fully understood. In particular, how the location and orientation of different branching

types are specified remains unknown [13]. However, empirical evidence suggests that

two gene proteins, Fibroblast Growth Factor-10 (FGF10) and Sonic Hedgehog (SHH),

are crucial to lung development [31]. FGF10 is associated with stimulating tissue

growth, and SHH is associated with inhibiting tissue growth. Experimental research

suggests that FGF10 is expressed near the lung surface, then diffuses through the

fluid-filled region called the mesenchyme. It then binds to the Fibroblast Growth

Factor receptor 2b (FGFR2b), which in turn allows it to bind to SHH. This binding

happens most primarily near the tips of airway branches where we see bifurcation

during lung development. The branch tips, or epithelial buds, are the site of high

concentrations of SHH [28, 25, 39].

FGF10 and SHH are only two of the many morphogens that influence lung

morphogenesis. We will only focus on these two gene proteins, and specifically how they

might be concentrated near the surface of the lung. In particular, we will frame our

analysis around the presence of FGF10, since it is more abundant near the lung surface.

We are interested in understanding how FGF10 expression patterns might form at the

lung surface, before it diffuses inward to drive branching morphogenesis. Mathematical

modeling of the molecular interactions at the lung surface may give insight into how

FGF10-SHH interactions regulate lung branching morphogenesis. This may identify

potential avenues to explore for treating hypoplastic lungs in a human fetus.

1.2 Lung Branching Morphogenesis

This section addresses the anatomy of a mammalian lung, specifically during the

pseudoglandular stage, in which primary branching structures are formed. This stage of

development involves lung buds branching into the surrounding mesenchyme, an

unspecialized tissue that a developing embryo utilizes to form many different organ

structures. Lung buds branch into the mesenchyme because of the accelerated growth

of cells along the epithelial buds or stalks. Research has shown that this process

includes significant communication between mesenchyme tissue cells and epithelial cells

[23]. Figure 1.1 shows a general overview of a mammalian lung branch structure during

the embryonic, pseudoglandular, and canalicular stages of development. Notice that for

the pseudoglandular stage, the branching structure is not fully formed; only the first

few generations of branching have occurred. We are interested in the branching

generations after the bronchial split, but before the formation of alveoli.

3

During development, the mesenchyme plays an important role in both cellular

growth during branching morphogenesis and in the orientation and positioning of

individual branches. There are three types of branching modes that have been identified

during this stage of development: domain branching, planar bifurcation, and orthogonal

bifurcation. Figure 1.2 illustrates the differences in these branching types. All three are

needed to form the complex structure of the lung, however the “genetic clock” that

determines the manner and execution of branching has yet to be fully understood [24].

There are several more interesting and complex mechanisms needed for a

healthy lung to form, however, we will only focus on where our genetic cycling

reaction-diffusion equation may be relevant. The theory we are investigating proposes

that the process driving branching patterns occurs on the surface of the fluid-filled sac

that contains the mesenchyme. It is already well documented that SHH is produced in

the cells of the epithelial buds. We propose that as SHH diffuses through the

mesenchyme, it forms distribution patterns with the FGF10 near the surface of the

lung. It has been posited that FGF10 then diffuses through the mesenchyme, as

illustrated in Figure 1.3 [6, 27, 37].

The distribution pattern formed by this diffusion tells us where FGF10 is

theoretically concentrated. Regions with a higher concentration of FGF10 will allow

more rapid cellular growth, and the pattern formation may inform which type of

branching occurs (domain, planar, or orthogonal). Where FGF10 is less dense, SHH

will dominate, hindering the growth of cells. The proposed consequences of this

theoretical process can be seen in the imaging slides shown in Figure 1.4. These images

are taken from slices of murine lungs, and show how an epithelial bud can morph

during the branching process.

It is important to note that while we are discussing the lung development of

humans, the mathematical analysis will use a murine lung in the pseudoglandular stage

as the domain. There are many developmental differences, but since we focus primarily

on theory rather than medical applications, such differences will not be scrutinized.

Figure 1.5 shows the major sections of a typical murine lung, which represents a

structure consistent with our model. We will reference the geometry of this structure

when discussing our results in Chapter 6. Ultimately, we hope to gain insight into

mammalian lung development in general. [1, 16, 33, 8]

4

(a) (b) (c)

Figure 1.1. Human lung development stages during weeks 4 to 24. (a) Em-
bryonic stage: major airway are formed (weeks 4-8). (b) Pseudoglandular
stage: bronchial tree is formed (weeks 6-18). (c) Canalicular stage: epithelial
differentiation phase (weeks 16-24). Figure adapted with permission from the
British Lung Foundation, [How children’s lungs grow, British Lung Founda-
tion, https://www.blf.org.uk, Accessed 2020-02-13 (2019)].

Figure 1.2. An illustration of three branching types that occur during lung
development. Domain branching occurs when cellular growth is rapid, quickly
forming the foundational structure of the lung airways. Planar bifurcation
is on a smaller scale, and occurs at the very tip of the epithelial bud. We
focus our examination here. Orthogonal bifurcation determines when the
lung structure rotates the branching orientation, forming 3D structures. Fig-
ure adapted with permission from Nature, [R. J. Metzger, O. D. Klien, G.
R. Martin, and M. A. Krasnow, The branching programme of mouse lung
development, Nature, 453 (2008), pp 745–750].

5

Figure 1.3. The proposed mechanism by which pattern formation on the
surface of the lung may influence branching via distribution of FHF10 at key
growth points.

Figure 1.4. Scans of a murine lung epithelial bud during the pseudoglandu-
lar stage. Notice the flattening and migration of cells to form new branches
at the top edges of the bud (left to right). Figure adapted with permission
from Developmental Dynamics, [C. Schnatwinkel and L. Niswander, Multi-
parametric image analysis of lung-branching morphogenesis, Developmental
Dynamics, 242 (2013), pp. 622–637].

6

Figure 1.5. Diagram of the major parts of the murine lung. Figure adapted
with permission from Academic Press, [M. J. Cook, The Anatomy of the
Laboratory Mouse, Academic Press, 1965].

1.3 Genetic Cycling

Before exploring the intricacies of genetic modeling, it is necessary to establish a

general foundation of the biological mechanisms behind genetic expression. Genetic

information is determined by genotype and hard-coded into our DNA. During fetal

development, DNA provides the building schematics needed to create each component

of the body. It is though these schematics that the correct genes are identified and

expressed via protein synthesis. The expression of genes occurs in two general stages:

transcription and translation. During transcription, the enzyme RNA polymerase

attaches to a group of genes within a DNA strand and creates a template for RNA

replication. This template is used to synthesize proteins via translation and form a gene

product [15].

For this investigation, we are particularly interested in genetic regulation at the

transcription stage. During the formation of branching structures in the lung,

expression and repression signaling is largely mediated by peptide growth factors, which

can stimulate or inhibit mitosis and regulate cellular differentiation [15]. As described

in the previous section, we will be focusing on lung growth during the pseudoglandular

stage of fetal lung development, when epithelial cells differentiate to form a tubular

structure and elongate into the surrounding mesenchyme tissue. Branching

7

morphogenesis relies on signaling pathways between receptors on the epithelial buds

and peptide growth factors in the mesenchyme [28].

The foundation of our analysis relies on the theory of reaction-diffusion equations

describing feedback loop gene interactions. It is theorized that FGF10 encourages SHH

formation, and in turn SHH inhibits FGF10 [16]. As more SHH is created, more FGF10

is inhibited. Without high FGF10 levels, SHH depletes and therefore becomes less

effective in inhibiting FGF10, which can then continue to propagate, starting the cycle

over again. Figure 1.6 shows a simple visualization for this system.

Such feedback loops have been successfully described by reaction-diffusion

equations, such as with murine hair growth and crocodile teeth patterns [26]. It has

been challenging for the scientific community to find real-world biological applications

of reaction-diffusion systems. Nonetheless, they serve as useful models to gain insight

into possible mechanisms at work in the incredibly complex system of biological

development.

Figure 1.6. Simple diagram of the auto-catalytic interaction between FGF10
and SHH.

1.4 Research Goals
This thesis offers one of many possible models of FGF10 and SHH signaling

pathways in epithelial bud branching. Its goal is to propose a new theoretical pattern

formation map of FGF10 at the lung surface-mesenchyme border by modeling the

interaction between FGF10 and SHH. Hopefully, such a model will shed light on how

cell proliferation is regulated and which physical mechanisms contribute to lung

branching in fetal development. Experimental verification of the model will be needed

before deciding if the proposed mechanism is valid.

Before solving the model equations on the lung surface, some precedence must

be set that ensures the validity of the solution. First, we will conduct a thorough

8

stability analysis of the model before offering an analytic solution on a spherical

surface. It is necessary to perform a stability analysis when there is no diffusion present

in the system, then include the diffusion terms along with a small perturbation from

the fixed points. From here we can determine which parameters give rise to Turing

instabilities in this context.

A visualization of the analytic solution will then be compared to one using a

numeric solution, in order to show consistency and display the validity of using the

finite element method code. Further error analysis tests for consistency and convergence

of the system will provide more evidence for the soundness of the model. We will then

examine patterns that emerge on a growing domain. This involves comparing patterns

on spheres of varying sizes, then manipulating parameters to mimic domain growth.

Finally, the methods used for these studies will be applied to 3D lung geometries

representing the pseudoglandular stage of murine fetal lung development. The results

from these simulations will inform the discussion on applicability, which appears in

Chapter 6. We will end with a discussion of possible applications in the biomedical

field.

9

CHAPTER 2

Modeling Fibroblast Growth Factor 10

Expression

Mathematical models of pattern formation have been exhaustively studied [26].

Here we give a basic overview of the process of Turing analysis on a 3D domain. We

will describe the reaction-diffusion model for FGF10 expression in embryonic lungs. We

will nondimensionalize the model and perform a linear stability analysis. Before solving

the model on a lung geometry, we will validate the methods by solving both

analytically and numerically on a sphere. Here we will assume a closed domain

representing the surface of the unit sphere, and the methods used will be extended to

the geometry of a lung in later chapters. This chapter details the analytical basis for

numerical approximations to follow.

2.1 Reaction-Diffusion Models
The original basis for Turing’s model is the interaction of two substances that

undergo chemical reactions and spatial diffusion. This classic reaction-diffusion system

has this general form:

change in time︷︸︸︷
∂U

∂t
−

diffusion︷ ︸︸ ︷
DU∆U =

reaction︷ ︸︸ ︷
f(U, V)

∂V

∂t︸︷︷︸
change in time

− DV ∆V︸ ︷︷ ︸
diffusion

= g(U, V)︸ ︷︷ ︸
reaction

(2.1)

Both U and V are functions of position and time. The reaction functions f(U, V) and

g(U, V) describe the reaction dynamics, including the rates of production and

degradation of U and V . The diffusion terms represent the diffusion of U and V , with

diffusion rates DU and DV .

Let us examine Schnakenberg’s approach. He considered the kinetics of a

tri-molecular reaction, given by:

X
k1−−⇀↽−−
k2

F 2F + S
k3−−→ 3 F Y

k4−−→ S

Here, F represents the activator FGF10, and S represents the inhibitor SHH. X and Y

are their respective precursor substrates. Using the law of mass action, this series of

10

reactions is represented by Equation (2.2) below. Let the function F designate the

behavior of FGF10, while S applies to SHH. This model is then given by:

∂F

∂t
−DF∆F = k1 − k2F + k3F

2S

∂S

∂t
−DS∆S = k4 − k3F

2S

(2.2)

All parameters are positive and real. Substrate precursors of FGF10 and SHH are given

by k1 and k4, respectively. The activator FGF10 is modeled as an auto-catalytic

function, represented by the terms k3F
2S (positive auto-catalysis with SHH) and k2F

(negative auto-catalysis with the precursor substrate). The k3F
2S term subtracted from

the inhibitor equation for SHH, since the SHH decreases in concentration as FGF10 is

produced during the k3 reaction. The two morphogens form a feedback loop that

ensures a cyclic production and degradation of each substance when in a steady state.

The diffusion rates DF and DS account for delays in the auto-catalysis process.

Normally, diffusion terms largely depend on the size of the molecular components that

are interacting with each other, and have a square root relational dependence on such

elements [36]. However, FGF10 and SHH do not directly bind to each other, but to

intermediary receptor genes that slow down the diffusion process. Later we will assign

values to the diffusion factors so that FGF10 diffuses about 10 times more slowly than

SHH, which accounts for these delays.

2.2 Nondimensionalization
Here we nondimensionalize the model equations. Referencing equation (2.2), we

can use the following substitutions:

F = uua S = vva ~x = x̂xa t = τta ∆→ ∆Γ

This results in the following equation, where the derivative is taken with respect to τ :

∂u

∂τ
− DF ta

x2
a

∆u =
k1ta
ua
− k2tau+ k3uavatau

2v

∂v

∂τ
− DSta

x2
a

∆v =
k4ta
va
− k3u

2
atau

2v

(2.3)

We can then make substitutions for each term, and define some new ones:

ua =

√
k2

k3

va =

√
k2

k3

x2
a =

DF

k2

ta =
1

k2

and α =
k1

k2

√
k3

k2

β =
k4

k2

√
k3

k2

δ =
DS

DF

γ =
1

k2

11

This gives us the simplified system:

∂u

∂τ
−∆u = f(u, v) with f(u, v) = γ

(
α− u+ u2v

)
∂v

∂τ
− δ∆v = g(u, v) with g(u, v) = γ

(
β − u2v

) (2.4)

We now have scaled equations, with γ acting as a scaling measure for the

relative strength of the reactions [26]. The rates of production and degradation of the

morphogens rely on the precursor substrate values of α and β.

2.3 Surface Reaction-Diffusion Model
In this section, we will model the spatial expression of FGF10 at the surface of a

unit sphere. We will accomplish this by using a surface reaction-diffusion model. The

surface reaction-diffusion model is obtained by replacing the Laplace operator in the

reaction-diffusion model (2.4) with the Laplace-Beltrami operator. Analysis and

numerical simulations of partial differential equations have been thoroughly studied on

different geometric models [9, 38, 5]. The following definitions are adapted from these

studies:

Let Ω be an open subset in R3 and Γ be a 2D hypersurface contained in Ω. Let

w : Γ→ R be differentiable at x ∈ Γ. We define the tangential gradient of w at

x ∈ Γ by:

∇Γw(x) = ∇w̄(x)−∇w̄(x) · n̂(x)n̂(x), (2.5)

where w̄ is a smooth extension of w : Γ→ R to an (n+ 1)−dimensional neighborhood

of the surface Γ, so that w̄|Γ = w, and n̂(x) is a unit normal at x. The Laplace-Beltrami

operator applied to a twice differentiable function w ∈ (Γ) is:

∆Γw = ∇Γ · ∇Γw (2.6)

Substituting the Laplace-Beltrami operator into the nondimensionalized

reaction-diffusion model (2.4) gives us:

∂u

∂τ
−∆Γu = γf(u, v) and

∂v

∂τ
− δ∆Γv = γg(u, v) (2.7)

which we will use going forward.

2.4 Steady-State Analysis

Here we carry out a steady state analysis of the model, Equation (2.4). We

observe from Equation (2.4) that the model relies on parameters α and β to determine

stability regions. We can find these regions by first removing the diffusion terms, then

solving for the fixed points of the system, which are the solutions to the equations:

12

α− u+ u2v = 0 and β − u2v = 0.

This system has a fixed point at (u∗, v∗) = (α + β, β
(α+β)2

). To determine the region of

stability about these fixed points, we first perturb the system by some small |ε| << 1.

u = u∗ + ε u −→ ∂u

∂τ
= ε ut = γ f(u∗ + ε u)

v = v∗ + ε v −→ ∂v

∂τ
= ε vt = γ g(v∗ + ε v)

Next, we perform a Taylor expansion about the fixed point. The notation u̇ and v̇ will

be used to denote the partial derivatives for u and v with respect to τ , while fu, fv, gu,

and gv denote the partial derivatives for f and g with respect to u and v:(
u̇

v̇

)
= γ

(
fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

)
·

(
u

v

)
+ O(ε2) (2.8)

Or more simply, without higher order terms:

Ẇ = γJW (2.9)

where the (˙) operator indicates the time derivative. Before plugging in the partial

derivatives and parameters into J , there are some useful generalizations to highlight.

Solving the linear equation det(J −λI) will reveal the necessary constraints for stability:

det

(
fu − λ fv

gu gv − λ

)
= 0 −→ λ2 − λtr(J) + det(J) = 0

It is assumed that the partial derivatives of f and g are evaluated at the fixed point.

The the solution is:

λ =
tr(J)±

√
tr(J)2 − 4 det(J)

2
(2.10)

Since stability is desired, we have constraints on the values for tr(J) and det(J). This

requires re(λ) < 0, which implies tr(J) < 0 and det(J) > 0. These constraints are

satisfied when:

fu + gv < 0 and fugv − fvgu > 0 (2.11)

Now it is useful to fill in the partial derivative and parameter values. The Jacobian is

therefore:

13

J =

(
− 1 + 2uv u2

− 2uv − u2

)∣∣∣∣∣
(u∗, v∗)

=

−1 +
2β

α + β
(α + β)2

− 2β

α + β
− (α + β)2

 (2.12)

This defines the constraints as:

β − α < (α + β)3 and (α + β)2 > 0 (2.13)

The first constraint is illustrated in Figure 2.1(a), which highlights the stable region of

the model system when no diffusion is present. Note that its border is defined by a

Hopf bifurcation at tr(J) = 0. The second constraint is already fulfilled for all real

values of α and β.

The phase planes in Figure 2.1(b) and 2.1(c) verify that the fixed point is stable

for the parameter values (α, β) = (0.1, 0.9) in the desired region, and unstable for the

pair (0.2, 1.2) outside that region. Now we have a starting point for the Turing

Instability region.

14

(a)

(b) (c)

Figure 2.1. Stability dynamics for the model system without diffusion. (a)
The stability regions for parameters α and β. (b) Phase plane with α = 0.2
and β = 1.2. Note that the parameters are in the stable region, thus the phase
lines converge to the equilibrium. (c) Phase plane with α = 0.1 and β = 0.9.
Note that the parameters are outside the stable region, thus the phase lines
diverge from the equilibrium.

15

2.5 Turing Instability Regions

The system is stable for β − α < (α + β)3, so it is necessary find the region

fitting this constraint where the activator-depletion system with its diffusion terms is

unstable. To examine the system with the diffusion terms, Equation (2.9) is revisited.

Without diffusion, there was Ẇ = γ JW . With diffusion, there is:

Ẇ −D∆ΓW = γ JW with D =

(
1 0

0 δ

)
(2.14)

To turn this into a linear system, we can define the following eigenvalue problems to use

as substitutes into Equation (2.14):

Ẇ = λW and ∆ΓW = −k2W (2.15)

Here, we need k 6= 0, for diffusion to affect the model. We are concerned with finding

constraints on the eigenvalues in λ. In Section 2.6, we will solve these definitions

analytically. For now, it is necessary to examine the linear system:

λW +Dk2W = γJW (2.16)

Once the characteristic equation for λ is found, it will provide constraints on the

parameters α, β, γ, and δ that will ensure instability, and thus reveal the Turing

region. Stability without diffusion required the eigenvalues produced by the Jacobian

matrix be negative. With diffusion, the goal is to find at least 1 positive eigenvalue.

The characteristic equation is found in the same way as seen in Section 2.4:

det(−Dk2 + γ J − λI) = 0 −→ det(X − λI) = 0 −→

det

[(
−k2 + γfu γfv

γgu −δk2 + γgv

)
− λI

]
= 0 (2.17)

Here, fu, fv, gu, and gv are assumed to be evaluated at the fixed point (u∗, v∗). Now

we can utilize the equation λ2 − λtr(X) + det(X) = 0, yielding:

λ2 − λ[γ (fu + gv)− k2(1 + δ)] + det(X) = 0 (2.18)

det(X) = δk4 − γ(δfu + gv)k
2 + γ2(fugv − fvgu) (2.19)

16

A value satisfying det(X) < 0 is desired, because it will ensure that the fixed

point becomes an unstable saddle node. Alternatively, we could constrain tr(X) > 0 to

ensure instability, however we have already established that fu + gv < 0 in Equation

(2.11). Thus tr(X) < 0, and we must focus on the parameter values that satisfy

det(X) < 0.

We can examine each term in det(X) to determine the deciding factors for

instability. We know that δk4 must always be positive, since δ > 0. Also, since

γ2(fugv − fugv) = γ2det(J), it must be positive, as this was a constraint established on

the system without diffusion. The coefficient of interest is γ(δfu + gv)k
2, which must be

positive for det(X) < 0. We already know that fu + gv < 0 from Equation (2.11) and

gv < 0 from Equation (2.12). Constraining fu to be positive, we can change the sign of

this term. This requires α < β and δ(β − α) > (α + β)3, although this will not be

sufficient to fulfill all the needed constraints. In addition, we must make this term large

enough to shadow its positive neighbors, so we need δ > δc for some critical value

δc > 1. This critical value is found by solving det(X) = 0.

We now know that for instability to occur, we need to find the threshold for δ

that makes the γ coefficient term in det(X) larger that the other two terms, as well as

restrict the parameters α and β so that fu is positive. This constraint is seen when

examining the form of Equation (2.10), as a negative value for the determinant ensures

one eigenvalue will be positive and one will be negative. The threshold for δc can be

found by taking the derivative of det(X) with respect to k2, and examining the region

where the minimum is negative.

2δck
2 − γ(δcfu + gv) = 0 −→ k2 = γ

δcfu + gv
2δc

(2.20)

Next, we plug this value into det(X)=0 and solve for δc:

4δc(fugv − fvgu)− (δcfu + gv)
2 = 0 −→(

δc(β − α)− (α + β)3
)2

= 4δc(a+ b)4
(2.21)

These parameter constraints describe Turing regions in terms of α, β, and δ. They also

provide a minimum delta value, specifically:

δc =
(α + β)2

β − α

(
α + β −

√
(α + β)2 − 4(β − α)

)
(2.22)

The wave number k2 is also a critical value. Variations can effect the instability

that depends on det(X) < 0. The critical values of k are found when det(X) = 0, as in

17

Equation (2.19). Since det(X) is degree 2 polynomial with respect to k2, we can apply

the quadratic formula to find the critical wave numbers. This yields:

k2 =
γ

2δ

[
δfu + gv ±

√
(δfu + gv)2 − 4δ(fugv − fvgu)

]
=

γ

2δ

δ(β − α
α + β

)
− (α + β)2 ±

√(
δ
β − α
α + β

− (α + β)2

)2

− 4δ(α + β)2

 (2.23)

We then have k− < k < k+. More about the wavenumbers and their numerical

approximations will be discussed in Chapter 3.

There are now multiple constraints on α, β, and δ that define the Turing

instability region. We can visualize these regions for various values of δ, as shown in

Figure (2.2). The shaded areas are Turing instability regions, which are stable when

there is no diffusion present, but unstable when diffusion is added. Notice that the

region grows for increasing δ, and for δ >> 1, the slope at the origin tends toward

α = β. The parameter constraints are summarized in Table (2.1).

Figure 2.2. Instability regions for varying δ in the model system when diffu-
sion is present.

18

Table 2.1. Parameter Constraints For Turing Instabilities

Generic Constraint Parameter Constraint

fu + gv < 0 β − α < (α + β)3

δfu + gv > 0 α < β and δ(β − α) > (α + β)3

4δc(fugv − fvgu)− (δcfu + gv)
2 > 0

(
δ(β − α)− (α + β)3

)2
> 4δ(α + β)4

2.6 Analytical Solutions on a Sphere

Having established several parameter constraints, we can now solve the

eigenvalue problems stated in (2.15) using the standard partial differential equation

method of separation of variables. We can begin with a domain on the surface of the

unit sphere. For this analysis, we are only concerned with the steady state patterns

that arise from exciting specific wavenumbers when Ẇ = 0. Therefore, we will only be

examining the spatial variables. Here, the following boundary conditions and initial

conditions are set as:

r = 1, − π

2
< θ <

π

2
, − π < φ < π (2.24)

To solve the spatial eigenvalue problems from Equation (2.15), we solve their

corresponding eigenfunctions. The Laplace-Beltrami eigenvalue problem is given by:

∆ΓW = −k2W = µ (2.25)

It takes a 3-dimensional argument in spherical coordinates and eliminates the

dependence on the radial vector. If we use the unit sphere, then there is no term

representing the radius to evaluate. However, since we are examining growing domains,

it is prudent to mention that radii not equal to one will have a scaling effect on the

solution interval values. Consider:

1

r2

∂

∂r

(
r2∂W

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂W

∂φ

)
+

1

r2 sin2 φ

∂2W

∂θ2
= k2W = µ (2.26)

19

But without any change in the radial dimension, the partial derivatives with respect to

r are zero, leaving:

1

sinφ

∂

∂φ

(
sinφ

∂W

∂φ

)
+

1

sin2 φ

∂2W

∂θ2
= r2k2W = µ (2.27)

If we evaluate the wavenumber as r2k2, then we find that the k values for the

Turing instability interval (2.23) change to r2 · (k−, k+). This observation becomes

extremely useful when we discuss growing domains in Section 5.2. For now, it is

sufficient to evaluate the system’s eigenfunctions for a domain were the unit sphere.

Since our solution has the form W (θ, φ, t) = x(θ)y(φ)z(t), the results are the two

Sturm-Liouville equations:

d

dθ
(sin θx′(θ)) +

(
k2 sin θ − µ

sin θ

)
x(θ) = 0 and y′′(φ)− µy(φ) = 0 (2.28)

We find a periodic solution for y(φ), since y(π) = y(−π), and likewise for the derivative

y′(φ). This leads to solutions in sine and cosine, given in their exponential form below.

The function in x(θ) follows the form of the Legendere equation. We now have the 2

eigenfunctions for W in θ and φ:

xmn(θ) = Pm
n (cos θ) and ym(φ) = eimφ (2.29)

with m = 0, 1, 2, ... and n ≥ m. The eigenvalue µ is equal to m2, and the wave numbers

are necessarily k2 = n(n+ 1), which satisfied the the Legendre Polynomial in θ.

Together, the eigenfunctions in x and y are defined as the spherical harmonics

Y m
n (θ, φ) = Pm

n (cos θ)eimφ, and have many applications in dynamical systems [12]. Since

we already established an interval for k in which the Turing Region exists, we can

define the solution in terms of the maximum and minimum values of k. Let kmin

designate the smallest integer value in (k−, k+), and let kmax be the greatest integer

value in (k−, k+). Then the analytical solution can be defined as:

W (θ, φ) =
∞∑
m=0

kmax∑
n=kmin≥m

Y m
n (θ, φ) (2.30)

While (2.30) represents the overall picture of the eigenfunction solutions, we are

more interested in specific values of m and n which excite certain wavenumbers. Our

goal is to show that we can derive patterns from the eigenfunction solutions and then

duplicate them numerically. By plotting the eigenfunctions Y m
n (θ, φ) on the surface of a

sphere, we can excite wavenumbers k2 using values of m and n. Figure 2.3 below shows

20

several examples of eigenfunction solution approximation visualizations for varying

values of m and n. The visualizations use a color scheme where dark purple represents

relatively lower values, and light green indicates relatively greater values. In this

context, we are more interested in the patterns rather than the values they represent.

For these images, an open-source MATLAB R© function [35] was used to calculate the

values for each 3D point, then the data was copied into a .vtk file for visualization in

ParaView R©. More discussion on comparing the eigenfunction solutions to the numerical

solutions of the model system is discussed more in Chapter 3.

n = 1

n = 2

n = 3

n = 4

n = 5

m = 1 m = 2 m = 3 m = 4 m = 5

Figure 2.3. Eigenfunctions of spherical harmonics on the surface of a sphere

21

CHAPTER 3

Numerical Approximation of the Model

Equations

The model system does not have an analytic solution for irregular geometries, so

a finite element numerical approximation is used. First, we will describe the finite

element method in which a domain is split into a discretized mesh and the differential

equation is solved on each division. Next, we will discuss how I discretized the system

in time using an implicit-explicit (IMEX) combination scheme. Then we will examine

how varying the parameter γ corresponds to a comparable growth of the domain.

Finally, this chapter will discuss the pattern visualizations for varying γ on the surface

of a sphere.

3.1 The Surface Finite Element Method
Solving the model equations using the finite element method (FEM) uses the

Laplace-Beltrami operator for a 2D domain in a 3D space. The discretized space is

represented numerically by a linear system of matrices, and for parabolic problems, the

square matrices are conveniently formatted as symmetric and positive definite. This

process has already received thorough analysis [10], so only a brief overview will be

given here.

To begin, recall the system of differential equations on the 2D domain Γ, now

given Neumann boundary conditions:

∂u

∂t
−∆Γu = γ f(u, v)

∂v

∂t
−δ∆Γv = γ g(u, v) with n̂ ·∇Γu = n̂ ·∇Γv = 0 on ∂Γ

(3.1)

We treat this as a closed system, therefore there is no flux through the surface.

The first steps in applying the surface finite element method are to multiply the

equations by a test function and then integrate to establish the weak formulation. The

purpose of using a test function of our choosing is to guarantee a solution for the

system in the weak formulation. The test function ϕ must satisfy:

∫
Γ

ϕ
∂u

∂t
−
∫

Γ

ϕ∆Γu =

∫
Γ

γϕf(u, v)

∫
Γ

ϕ
∂v

∂t
−
∫

Γ

ϕδ∆Γv =

∫
Γ

γϕg(u, v) (3.2)

22

Note that we can use integration by parts here, and substitute a more easily computed

term for ∆Γ in this context. Green’s Theorem states:∫
δΓ

a · ∇Γb =

∫
Γ

a ·∆Γb+

∫
Γ

∇Γa · ∇Γb (3.3)

We can redily apply Green’s Theorem here, and since the flux on the boundary ∂Ω is

zero, we can rewrite (3.2) as:∫
Γ

ϕ
∂u

∂t
+

∫
Γ

∇Γϕ · ∇Γu = γ

∫
Γ

ϕf(u, v) and∫
Γ

ϕ
∂v

∂t
+ δ

∫
Γ

∇Γϕ · ∇Γv = γ

∫
Γ

ϕg(u, v)

(3.4)

3.1.1 Mesh Discretization
Now recall the discussion of the Laplace-Beltrami operator in Section 2.3. When

considering that our domain is not continuous but a mesh of countable cells, we can

represent Γ as a discretized space T with elements K. In this case, T is a representation

of Γ that is partitioned into non-overlapping quadrilateral cells. This work uses both a

spherical mesh domain for preliminary studies and validation, as well as a polygonal

lung mesh for biological applications. The mesh surface is made of quadrilateral cells.

The points where the quadrilateral vertices meet are called nodes. Surrounding each

node is a patch of quadrilaterals that each share a node as a vertex. Figure 3.1 shows a

close-up area of one such mesh used in this thesis, highlighting a patch of cells sharing a

node.

Figure 3.1. Close-up of polygonal lung mesh with quadrilateral elements.
The yellow region represents a patch of cells that share a node (red) as one
of their vertices (blue).

23

Using this notation to represent the mesh mathematically, we approximate the

system as: ∑
K∈T

∫
K

ϕ
∂u

∂t
+
∑
K∈T

∫
K

∇Kϕ · ∇Ku = γ
∑
K∈T

∫
K

ϕf(u, v)

∑
K∈T

∫
K

ϕ
∂v

∂t
+ δ

∑
K∈T

∫
K

∇Kϕ · ∇Kv = γ
∑
K∈T

∫
K

ϕg(u, v)

(3.5)

Because our domain is a surface, we must use the tangential gradients when

computing the spatial integral (as opposed to the standard gradients for a bulk

volume). Recall that the matrices here are symmetric and positive definite. In this

context, the tangential gradient is defined for each variable as:

∇Ku = DxKG
−1
K ∇u ∇Kv = DxKG

−1
K ∇v

and ∇Kϕ = DxKG
−1
K ∇ϕ = ∇ϕTG−1

K DxTK

with GK = DxTKDxK and DxK =
∂xK
∂x̄

(3.6)

Furthermore, we can express the spatial elements in terms of a reference element

K̂ = [0, 1]2, which is beneficial for efficiency in numerical implementation. The reference

element is derived from the discretization of the domain mesh. Since our surface mesh

is made of quadrilaterals, the reference element will be a unit square. We use the

reference element to more quickly and efficiently solve the given system on each cell of

the mesh. It is easier to first solve each cell of the model on the unit square, then input

that solution through a isoparametric mapping that aligns with the spatial properties of

an irregular quadrilateral in the mesh. Figure 3.2 shows an example visualization of

such a process for a square [−1, 1]2.

Figure 3.2. Example visualization of the reference element under isopara-
metric mapping to a quadrilateral on a discretized mesh. Figure adapted
with permission from ETH Zurich Universitatstrasse, [P. Arbenz, Lecture
notes for Introduction to finite elements and sparse linear system solving,
September 2017.]

24

[2]

The discretized space can be expressed in terms of the reference element and

simplified using the relation GK = DxTKDxK .

∫
K

∇Kϕ · ∇Ku =

∫
K̂

(
∇ϕTG−1

K DxTK
)
DxKG

−1
K ∇u =

∫
K̂

∇ϕTG−1
K ∇u∫

K

∇Kϕ · ∇Kv =

∫
K̂

(
∇ϕTG−1

K DxTK
)
DxKG

−1
K ∇v =

∫
K̂

∇ϕTG−1
K ∇v

(3.7)

It is prudent to note that this process is referred to as triangulation, named

from the standard practice in computational mesh generation, which creates surfaces

with triangular elements. For the sphere model, we use quadrilaterals within a spherical

manifold refined 4 times, yielding a discretized surface with 44 quadrilaterals. The lung

model is also be composed of quadrilaterals.

3.1.2 Basis Functions
The triangulation process lends itself to numerical representation in vector form.

Vertices on the mesh are assigned to positions in a vector, and can be solved in a linear

system. With the discretization of space, the variables u and v (representing FGF10

and SHH, respectively), must in turn be discretized. Below is our discretized

approximation for u and v, with new variables explained below:

u ≈ uK =
∑
j

ϑjUj v ≈ vK =
∑
j

ϑjVj (3.8)

Uj and Vj are unknown coefficients, which we will ultimately be solving for. We

now introduce the basis function ϑj. The basis function in this context is similar to the

linear algebra standard. It is a piecewise polynomial whose purpose is to assign a value

to a node with index j, interpolate values for the vertices that share an edge with node

j, and return zero for all other vertices. We create a different basis function for each

node on the mesh. Recall Figure 3.1 earlier in this section. Our basis function for this

particular patch would have a value of one for the red-colored node, and interpolated

value for the blue vertices, and zero for every other vertex. In “classical” FEM

formulations, low-degree polynomials are used for each basis function. Predictably,

higher degree polynomials result in both increased accuracy and increased computing

time. For our model, we use a tri-quadratic piecewise approximation for each basis

function, given in the form of

(ax2 + bx+ c)(dy2 + ey + f)(gz2 + hz + i) (3.9)

25

with all real coefficients. Each of the 27 terms (1, x, y, z, xy, xz, yz, xyz... x2y2x2)

form a linear combination that composes the basis function. Numerical algorithms are

then responsible for the heavy lifting of using the basis functions to solve the model on

each cell.

3.1.3 Notation Simplification

Our spatially discretized system is as follows (with the tangential gradient

notation omitted for clarity):∑
K∈T

∑
j

∫
K

ϕi · ϑj
[
∂Uj
∂t

]
+
∑
K∈T

∑
j

∫
K

∇Kϕi · ∇Kϑj [Uj] = γ
∑
K∈T

∑
j

∫
K

ϕifK(Uj, Vj)

∑
K∈T

∑
j

∫
K

ϕi · ϑj
[
∂Vj
∂t

]
+ δ

∑
K∈T

∑
j

∫
K

∇Kϕi · ∇Kϑj [Vj] = γ
∑
K∈T

∑
j

∫
K

ϕigK(Uj, Vj)

(3.10)

With these approximations, the test functions ϕi can have a solution for the

system at each vertex. For this thesis, it will be sufficient to state that a unique

solution to the above system exists as a direct application of the Lax-Milgram Theorem

[10]. For ease of communication, we will further simplify the notation here as:∑
K∈T

∑
j

∫
K

x · y =
(
x, y

)
Now our system is more easily examined when written as(

ϕi, ϑj

) ∂Uj
∂t

+
(
∇Kϕi,∇kϕj

)
Uj = γ

(
ϕi, fK(Uj, Vj)

)
(
ϕi, ϑj

) ∂Vj
∂t

+ δ
(
∇Kϕi,∇kϕj

)
Vj = γ

(
ϕi, gK(Uj, Vj)

) (3.11)

Here, it is useful to explain the expansion of the functions fK and gK , the

discretized versions of the reaction equations seen in (2.4). Because the solutions are in

vector format, we must treat the nonlinear term piecewise; that is, multiply each vector

term according to its position in the vector.

Since the basis functions need only satisfy the linear system, we want it to be as

simple as possible. In addition, α and β are transformed into a and b, which are simply

mono-valued vectors corresponding to the size of the basis function vectors. We can

now expand the fK and gK terms as follows:

(
ϕi, fK

)
=
(
ϕi, α− uK + u2

KvK

)
=
(
ϕi, a

)
−
(
ϕi, ϕj

)
· Uj +

(
ϕi, ϕj

)
· U2

j Vj(
ϕi, gK

)
=
(
ϕi, β − u2

KvK

)
=
(
ϕi,b

)
−
(
ϕi, ϕj

)
· U2

j Vj

(3.12)

26

Note that the notation U2
j Vj represents the nonlinear term vectors multiplied piecewise.

Rewriting Equation (3.11) using the substitutions above yields:

(
ϕi, ϑj

) ∂Uj
∂t

+
(
∇Kϕi,∇kϑj

)
Uj = γ

[(
ϕi, a

)
−
(
ϕi, ϑj

)
· Uj +

(
ϕi, ϑj

)
· U2

j Vj

]
(
ϕi, ϑj

) ∂Vj
∂t

+ δ
(
∇Kϕi,∇kϑj

)
Vj = γ

[(
ϕi,b

)
−
(
ϕi, ϑj

)
· U2

j Vj

]
(3.13)

We can now use matrix notation for each summation, using the following terms:

M = (ϕi, ϑj) L = (∇ϕi,∇ϑj) A = (ϕi, a) B = (ϕi,b)

Common nomenclature dictates that M is the mass matrix, L is the Laplace

matrix, and A and B are the forcing term vectors. The simple form is now:

M · d
dt

[Uj] + L · Uj = γ(A−M · Uj + M · U2
j Vj)

M · d
dt

[Vj] + δL · Vj = γ(B−M · U2
j Vj)

(3.14)

The spatial discretization is now complete. We can use these results to plug into

the temporal discretization, which will be discussed in the next section. We will use the

following generalized substitutions:

u→M · Uj v →M · Vj
∆u→ −L · Uj ∆v → −L · Vj

α→ A β → B

u2v →M · U2
j Vj

(3.15)

We use the openly sourced deal.ii library [3], a differential equation analysis

library for C++, to create the spherical triangulated mesh and implement most

functions for the finite element method. Deal.ii produces a triangulated model with a

few simple commands. The use of tangential gradients for surface calculations is more

challenging, requiring several nested loops through each vertex on the mesh. References

and comments in the code implementing these triangulation procedures can be found in

Section 3.4, and the complete code is in Appendix A.

3.2 Implicit-Explicit Time Stepping Scheme

The following time discretization will use both implicit and explicit strategies.

There is significant evidence that using a combination of implicit and explicit methods

27

improves the stability and decreases the error in temporal discretization schemes [21].

Further explanation and a summary of improved methods can be found in Appendix A.

Once we assemble the IMEX linear system, we will substitute the spatial discretization

terms discussed in Section 3.1. To begin, we recall our nondimensionalized system of

equations:

∂u

∂t
−∆u = γ (α− u+ u2v) ,

∂v

∂t
− δ∆v = γ (β − u2v) (3.16)

First, let’s examine the first equation in terms of u. We apply a first order implicit

Euler method to the time derivative, with the exception of the nonlinear term, which

will be kept explicit. This is one of many forms known as the Implicit-Explicit, or

IMEX, discretization scheme. Note that k is the time step length and N is the time

step index number.

uN − uN−1

k
−∆uN = γ (α− uN + u2

N−1vN−1) (3.17)

Separating the unknown values with un we get

uN + k (γuN −∆uN) = kγ
(
α + u2

N−1vN−1

)
+ uN−1 (3.18)

From here, we can solve the equation for v using a slightly more implicit scheme.

This is possible because when solving this system numerically, we can solve one

equation before the other for each time step. Therefore, the value uN will be known

when solving the equation for v. This yields:

vN − vN−1

k
− δ∆vN = γ(β − u2

NvN−1) (3.19)

Again, separating unknown terms yields

vN − k (δ∆vN) = kγ
(
β − u2

NvN−1

)
+ vN−1 (3.20)

In operator form, the system simplifies to

[1 + k (γ −∆·)]un = kγ
(
α + u2

N−1vN−1

)
+ uN−1

[1− kδ∆·] vn = kγ
(
β − u2

N−1vN−1

)
+ vN−1

(3.21)

Using this combination of implicit and explicit approaches allows a moderately

high level of accuracy without a significantly complex scheme. The issues surrounding

solving a model with nonlinear terms makes a fully implicit scheme challenging. We

achieved a reasonably stable scheme, so a more complex discretization that better

accounts for the nonlinear term was unnecessary. We can apply this temporally

28

discretized system to the spatially discretized result of the finite element method linear

system by substituting the results to form a linear system. Combining Equation (3.21)

and the substitutions in (3.15), we get:

[(1 + kγ)M + kL]UN = kγ
(
A + MU2

N−1VN−1

)
+ MUN−1

[M + kδL]VN = kγ
(
B−MU2

NVN−1

)
+ MVN−1

(3.22)

We now have a linear system of the form Ax = b, with:

A=

(
(1 + kγ)M + kL

M + kδL

)
, x =

(
UN

VN

)
, and b =

(
kγ
(
A + MU2

N−1VN−1

)
+ MUN−1

kγ (B−MU2
NVN−1) + MVN−1

)
(3.23)

3.3 Adaptive Time Stepping

The stability of this system largely depends on the size of the time step chosen

(this is discussed further in Chapter 4). Even though we have a partially implicit

scheme, it does not have the robust stability that a fully implicit Euler scheme has. For

our numerical implementations, the time step size began at k0 = 10−3, and was

adjusted based on an adaptive scheme. Because several simulations ran until t = 10 to

validate convergence, there was a desire to minimize the number of time steps required

for the simulation.

In order to maximize time efficiency and ensure stability, we adopted an

adaptive time stepping scheme [21] when solving on the lung mesh. The scheme itself

uses a variation of the Euler midpoint method to determine if the system is stable and

the time step can be increased, or if the system is heading toward instability and the

time step should be decreased. The second order method is given as follows:

F (1) = un + knf(un, vn) G(1) = vn + kng(un, vn)

F (2) = un + knf

(
un +

kn
2
F (1), v+

kn
2
G(1)

)
G(2) = vn + kng

(
un +

kn
2
F (1), v+

kn
2
G(1)

)
ef =

√
(F (2) − F (1))

2
eg =

√
(G(2) −G(1))

χ = min

[(
k0

ef

)1/4

,

(
k0

eg

)1/4
]

−→ kn+1 = χkn

(3.24)

To prevent drastic time step changes in either direction, we enforced the

following constraint:

29

if χ > 1.1, χ = 1.1 and if χ < 0.9, χ = 0.9

A convergence analysis and simulation validation for testing this method on a

lung mesh will be discussed further in Chapter 4, which will go into detail on error

analysis and the effect of time stepping constraints.

3.4 deal.II Algorithm Details

The C++ library deal.ii was used to solve the model in this thesis. The analytic

surface finite element method is implemented through a variety of functions designed to

discretize a defined space and solve a differential equation on each element. Below is a

summary of solving the model equations on the surface of a sphere. The headings for

the pseudocode appear as comments in Appendix A.

• Shape Definition: We use deal.ii’s GridGenerator function to call a
hypersphere, which defines only the surface elements of a sphere. It can be refined
an arbitrary number of times according to the user’s desired degree of precision.

• Degrees of Freedom: The degrees of freedom are associated with the edges on
each quadrilateral of the mesh. Expressed as a single number, the degrees of
freedom represent the number of expansion coefficients (Uj and Vj) that need to
be solved in the linear system. This step distributes the degrees of freedom,
essentially numbering each quadrilateral edge, as well as establish the size of the
solution and forcing term vectors.

• Sparsity Pattern: Since each degree of freedom is only dependent on
neighboring nodes, the linear system can be represented as a sparse matrix. The
sparsity pattern of the matrix is saved in templates for the mass matrix, Laplace
matrix, and what will become the system matrix (the A in the linear system
Ax = b).

• Surface Assembly: Because we are solving on a surface, the default shape
functions will not be useful. Using the degrees of freedom enumeration, we looped
through each cell and defined the tangential gradients for each shape function.

• System Assembly: This is the longest section of code, though not terribly
complex. Since we have a system of two equations, all the above steps were
implemented twice. With the exception of the surface assembly, deal.ii had built
in functions that handled each process automatically. No such function exists for
the time discretization, so we manipulated the mass matrix, Laplace matrix, and
forcing terms to create the system matrix and right hand side vector. The IMEX
method, as detailed in Section 3.2, was the basis for this manipulation.

• Solve Timestep: Here, we use deal.ii’s conjugate gradient solver on the linear
system. No preconditioner is necessary, since for parabolic problems the matrices
are already symmetric and positive definite.

30

• Output Solution: For observing a sphere with a single γ value, we solve until
t = 10 to observe the steady state. When modeling the evolution of patterns on a
growing domain, the steady state is found several times, each with a different
value for γ. More on this process is explained in Section 5.2.

3.5 Wavenumber Pattern Replication

Here we expand on the numerical application of the ideas discussed in

Section 2.6. An important part of verifying the validity of the model above is showing

that the numerical scheme can successfully reproduce the eigenfunction solutions on the

surface of a sphere. First, it may be prudent to note that one of the criticisms of Turing

Pattern analysis is that resulting patterns rely heavily on initial conditions. Here we

use several different initial conditions to excite various wavenumbers, and observe the

resulting pattern. Using the steady state initial values,
(
α + β, β/(α + β)2

)
, does not

produce the desired result. There must be some perturbation from these values to form

patterns. This is the deviation from a homogeneous state to which Turing referred.

Through reviewing published results [21] and through trial-and-error, we found that the

following perturbation from initial conditions readily instigated pattern formation:

Table 3.1. Perturbations from
Steady-State Initial Conditions

Variable Initial Condition

FGF10 (u) α + β + 0.1 ·
∑9

j=1 cos(2πjxyz)

SHH (v) β
(α+β)2

+ 0.1 ·
∑9

j=1 cos(2πjxyz)

Notice that the maximum value for either perturbation is 0.9. The values of α

and β were chosen so that even the largest perturbation possible would still allow initial

conditions valid within the Turing instability region. Table 3.2 shows some possible γ

values for various excited wavenumbers k2. Table 3.3 gives a few examples of

visualizations for α = 0.1, β = 0.9, and δ = 10. Recall that the values for k− and k+

are found by applying (2.23), and that k2 = n(n+ 1). Therefore, each wavenumber

corresponds to some n value. In addition, each numeric solution matches an

eigenfunction solution from Figure 2.3.

31

Table 3.2. Possible Parameters for the First 6 n Model Eigenvalues

α β γ k2 Interval Wavenumber n Eigenvalues

0.082 0.940 10.377 (1.998, 5.630) k2 = 2 n = 1

0.037 1.065 10.377 (2.0543, 6.3657) k2 = 6 n = 2

0.1 0.9 24.039 (4.8078, 12.0195) k2 = 6, 12 n = 2 or n = 3

0.014 1.245 24.039 (7.5306, 12.1634) k2 = 12 n = 3

0.134 0.821 70.060 (15.959, 28.050) k2 = 20 n = 4

0.1 0.9 70.060 (14.0120, 35.0300) k2 = 20, 30 n = 4 or n = 5

0.176 0.538 100.410 (19.7041, 26.0852) k2 = 30 n = 5

0.1 0.9 100.410 (20.0820, 50.2050) k2 = 30, 42 n = 5 or n = 6

While the numerical model can reproduce wavenumber excitations on the

surface of a sphere, there are still some issues with validating accuracy. When

comparing patterns between the eigenfunction solutions and numerical solutions, the

images were examined using the naked eye. Patterns were matched based on visual

similarity between the dark purple regions, which represent relatively lower values, and

the light green regions, which represent relatively higher values. Like the eigenfunction

solutions, we are more concerned with the pattern produced than the solution values

themselves. A numeric image analysis tool may have been better able to match

wavenumber patterns to their model counterpart. However, it is clear that our numeric

scheme is able to solicit patterning. Further experimentation through parameter

manipulation can certainly produce even more matching patterns, however for our

purposes a simple proof of concept is sufficient to validate our methods.

32

Table 3.3. A Comparison Of Numeric and Eigenfunction Solutions For the
Model On the Surface of a Sphere

Numeric Solutions (α = 0.1, β = 0.9, δ = 10) Eigenfunction Solutions

γ = 24.039 −→
n = 2

m = 1, n = 2

γ = 31.839 −→
n = 3

m = 2, n = 3

γ = 70.060 −→
n = 4

m = 3, n = 4

33

CHAPTER 4

Numerical Simulations of the Model on a

Unit Sphere

As discussed in Section 3.1, the finite element method is a technique used to

solve many different types of partial differential equations on a discretized domain.

Here we will discuss the simulation results of the model on a unit sphere. We will

examine the well-posedness, consistency, convergence, and stability of our model system

(3.22) on the surface of a sphere.

4.1 The Spherical Domain

Before examining the measures of error for consistency, convergence, and

stability, it is useful to establish some details about the domain in question. We will

examine an arbitrary pattern on the surface of the sphere for various spatial and time

step intervals. Each mesh was created using deal.ii’s mesh library. In addition, we will

be using solution values for u rather than v for the following analyses. The IMEX

scheme used grants significantly more accuracy to v, so for fairness we will measure the

system based on the maximum error in u.

The mesh itself has a base shape of a cube, and can be refined an arbitrary

number of times according to a spherical manifold. The color scheme of the

visualizations assigns light green to concentration values of u (FGF10) and dark purple

to concentration values of v (SHH). Upon each refinement, the number of cells in the

mesh quadruple, and the maximum diameter among all the cells, h, reduces by about

half. We will use h2 to denote the maximum diameter of a given cell after two

refinements from a cube, h3 for three refinements, et. cetera. Figure 4.1 below shows

four mesh densities for reference, while Table 4.1 details the numerical information on

each mesh, including number of cells and degrees of freedom. Not pictured is the h6

sphere, which will only be used as a domain for an exact solution facsimile. The images

shown in other sections use h3 spheres for visualizing patterns.

34

(a) (b)

(c) (d)

Figure 4.1. Sphere model meshes with various cell densities. (a) h2, (b) h3,
(c) h4, (d) h5.

Table 4.1. Sphere Model Mesh Density Values
h2 h3 h4 h5 h6

Number of Cells 96 384 1,536 6,144 24,576
Degrees of Freedom 386 1538 6,146 24,578 98,306
Maximum Diameter 0.541196 0.277048 0.139239 0.0697337 0.034877

35

Some visualizations to follow only show data up to t = 0.5. It is important to

establish that data collected up to this point is sufficient to show steady-state

dynamics. To do this, we will observe a standard L2 norm at t = 1, as follows:

||uN+1 − uN || =

√√√√dimu∑
i

(uN+1 − uN)2 (4.1)

Figure 4.2 shows the differences in L2 norms for varying mesh densities, each

taken using a timestep length of 10−3. The norm takes the difference between time

steps uN+1 − uN as the argument, where i = 1, 2, 3, ... dimu, with dimu being the total

number of elements in the solution vector representing u. We can see that as the mesh

density increases (or, as the diameter h halves), the steady state norm value decreases

by about half.

Figure 4.2. Numeric Scheme L2 norm using time step 10−3 for spheres of
various mesh densities.

4.2 Well-Posedness and Stability

We can define a well-posed numerical scheme as having three general

characteristics [34]:

1. A solution for the problem exists

2. The solution is unique

3. The solution changes continuously as the boundary values and initial conditions
change.

36

We can show existence and uniqueness, which is already established for FEM

nonlinear parabolic reaction-diffusion systems [10]. We have already stated that the

linear system Ax = b defined in Equation (3.23) consists of positive definite matrices.

Our matrices are also uniform; the deal.ii algorithm sparsity pattern is designed to have

the same number of entries for each row. For a linear system with uniformly positive

definite matrices, we are guaranteed both existence and uniqueness [9]. Therefore, we

know that there is a unique solution to the linear system stated in Equation (3.22).

The third requirement for well-posedness is more challenging to show, and will

not be proved here. Note that each timestep of the model linear system is time

invariant, which indicates the system is well-posed in general [4]. We rely on proofs

formulated in literature to verify that the solution indeed changes continuously

[9, 10, 11]. We can now state with confidence that the linear system is well-posed.

Stability demands that the solution is persistent, that is, small perturbations or

errors (such as round-off errors) in the data disappear over time. In addition, it implies

that a change of the initial and boundary data leads to a comparable change in the

numerical solution. Since the model linear system is well-posed, the solution depends

continuously on the input. For a discrete scheme, this continuous dependence is

analogous to stability [4]. However, a quantitative measure of stability was not found.

We discuss more about the conditional stability of the system in Section 4.5.

4.3 Consistency

Consistency in a model scheme requires that when mesh cell size and time step

size decrease, the truncation error approaches zero. In other words, the discrete system

should be a “good” approximation of the partial differential equation system. For

nonlinear time dependent PDEs solved by the finite element method, we must measure

consistency by examining the local truncation error for the linear system [7]. For the

system in question, we solve each time step via a linear equation. Recall the linear

system we set up using the FEM-IMEX scheme:

Ax = b (4.2)

Here x = (uN+1, vN+1)T , and b is a function of (uN , vN). To find the truncation error,

we apply a simple check after solving the system:

Truncation error = ||b−Ax|| (4.3)

The truncation error is already an integral part of the algorithm for solving the

linear system (in this case, the conjugate gradient method). We can apply a constraint

37

that forces the solver to continue enumerating until the solution gives a truncation error

below the desired amount. This feature also allows us to easily control the accuracy to

order p = (p1, p2), so long as we constrain the truncation error as being less than both

O(kp1) and O(hp2). We define order p by the following inequality:

||b−Ax|| / hp1 + kp2 (4.4)

We can then say that the numerical scheme is consistent if it is accurate of order

p = (p1, p2) > 0. For this analysis, we constrained the conjugate gradient algorithm to

iterate until the truncation error was less than 10−20. Therefore, we can achieve an

arbitrarily high accuracy order so long as we are willing to sacrifice the computing time

needed to achieve it. Since we keep the truncation error at 10−20 for all computational

runs, all permutations of h and k in the proceeding analysis are consistent with an order

of accuracy of at least (2,2). It may be prudent to note, however, that regardless of

initial conditions, consistent schemes never exceeded 200 conjugate gradient iterations.

4.4 Convergence

While consistency examines the discretization of a system, convergence implies

that the solution to the discrete system is a “good” approximation to the solution of

the partial differential equation system. Now, we cannot measure convergence in the

traditional way, because it requires knowledge of the exact solution. The exact solution

to the Schnakenberg system on the surface of a sphere is unknown. However, we can

create a facsimile of the exact solution by producing an output using the smallest time

step that is computationally reasonable.

If we call this exact solution facsimile WE while our approximate solution is Wh,

then we can say that the solution converges given that the following criteria is satisfied:∣∣∣∣∣∣Wh −WE

∣∣∣∣∣∣ / hq1 + kq2 (4.5)

However, because of computational limitations, it was not feasible to calculate

the difference Wh −WE for each time step. Instead, we examined the convergence rate

based on the following inequality:∣∣∣ ||Wh|| − ||WE||
∣∣∣ ≤ ∣∣∣ ||Wh −WE||

∣∣∣ / |hq1 + kq2| = hq1 + kq2 (4.6)

Using
∣∣ ||Wh|| − ||WE||

∣∣ is a valid measure so long as q = (q1, q2) > 0, or the solution

converges at rate q. The norms are the same as the one defined in (4.1). We see this

graphically in Figure 4.3 below, which shows how the convergence rates change for

38

varying h and k. Note that each successive graph (from right to left) is zoomed in by a

factor of 10 for the y-axis.

Figure 4.3. Numeric Scheme convergence norms over time for varying spatial
discretization (h) and time step (k) units

Convergence norm values are shown in Table 4.2 below, for various values of h

and k. Table 4.3 shows the maximum convergence rate for each pair of values (h, k).

We can confidently say that all models converge to some degree. Note that convergence

rates steadily increase as k decreases.

Table 4.2. Numeric Scheme Convergence Norm Values For Various Spatial
and Temporal Parameters

h5 h4 h3 h2

k = 10−3 1.9e-3 1.3e-3 5.0e-3 1.0e-2
k = 10−4 1.8e-4 1.2e-4 4.9e-4 1.0e-3
k = 10−5 1.8e-5 1.2e-5 4.9e-5 1.0e-4

Table 4.3. Numeric Scheme Convergence Rates For Various For Various Spa-
tial and Temporal Parameters

h5 h4 h3 h2

k = 10−3 (10, 10) (5, 5) (2, 2) (1, 1)
k = 10−4 (14, 14) (7, 7) (3, 3) (2, 2)
k = 10−5 (17, 17) (8, 8) (5, 5) (3, 3)

39

4.5 Simulation Errors
Each simulation using the above-mentioned time steps and mesh densities

produced solutions in line with expected value intervals. However, a problem arises

when we come across a scheme that is not consistent, like when solution values for the

linear system for a single time step approached infinity when using the conjugate

gradient method. This was the case for h2 using a time step of k = 10−2, which

indicated that the scheme is only conditionally stable. Indeed, we found that when

solving the system on more complex domains, a minimum time step of approximately

k = 10−3 was needed to endure consistency and thus stability.

Despite the uncertainty that follows such results and the absence of a rigorous

proof to precisely quantify stability conditions, we can still move forward with using the

FEM-IMEX scheme to produce patterns on the surface of a lung mesh. It is quite easy

to tell if there is a consistency failure without sacrificing much computing time. We can

examine the truncation error of the linear system over a small handful of iterations

(say, 10) if more than 100 iterations are needed. If the average norm between two

successive iterations continues to increase, the process can be halted and the timestep

restarted using a smaller k value. There were not any solutions produced that were

outside a reasonable range of values (between -2 and 2) for any simulations, indicating

that so long as the linear system was solvable, the solution is accurate to some degree.

This presents challenges when considering the time step adaptation method

presented in Section 3.3. We found that when using such a method with high values of

γ (usually over 300 for solving on the lung, and over 700 for solving on a sphere), the

solution tended toward infinity sometime after t = 1. It was then necessary to limit the

k value between 10−3 and 10−2 to prevent such errors, however this gave a significantly

smaller computational reward. More time and further study could yield a much deeper

experimental analysis of this scheme, but for this thesis, we will continue to the results.

40

CHAPTER 5

Fibroblast Growth Factor 10 Expression On a

Growing Domain

The following will detail how we varied the parameter γ to mimic the pattern

formation that occurs on a growing domain. First, we examined the relationship

between pattern emergence and domain size in spheres. We found that the predicted

pattern for larger domains could be induced by scaling γ by a factor dependent on the

square of the desired radius. We applied the same reasoning to the lung mesh, and

induced increasingly complex patterns by scaling the γ parameter.

5.1 Pattern Replication On a Sphere

Before solving on the surface of the lung, we study the relationship between the

scaling parameter γ and sphere radius r. Modeling this relationship validates the

efficacy of γ in simulating a growing domain. This entails solving the model system

several times on a variety of sphere surfaces.

Recall the analytic results when solving the Laplace-Beltrami eigenfunction on

the surface of a sphere. We concluded that k2 = n(n+ 1), with n being the degree of

the Legendre equation. However, increasing the radius of the domain increases the

wavenumber interval by an r2 scale factor. Our experimental results have been

consistent with this relationship. As the radius increases, smaller γ values are needed to

achieve the same patterns. Recall Equation (2.23). We can now introduce the influence

of the radius to give us:

r2k2 = r2γ · 1

2δ

[
δfu + gv ±

√
(δfu + gv)2 − 4δ(fugv − fvgu)

]
(5.1)

Where r2γ will be referred to the k-scaling term. An example of this relationship is as

follows: Say we have a sphere of radius rstart, and would like to replicate some

wavenumber k2 pattern on a sphere of a radius rend. Initially using some value, γstart,

we would then need to find a new γend such that the k-scaling term remains the same:

r2
endγend = r2

startγstart ⇒ γend = γstart
1

s2
(5.2)

With s as the scale factor from rstart to rend. In practice, it is useful to use larger

spheres for pattern replication. We have found that the transition between patterns is

more fluid when we examine a smaller γ range using decreased partition amounts on

41

larger spheres. In addition, there is less oscillation when mapping the L2 norm on larger

spheres (see Figure 5.1). Therefore, our simulations moving forward will use larger

domains to simulate the growth from small to large domains. As an example, we used

the following procedure to model a growing sphere:

1. Choose the starting model parameters using rstart and γstart.

2. Reproduce the starting pattern on a larger radius rend by plugging rend into the
pattern replication formula (5.2). From this, obtain γend.

3. Model the solutions on the larger sphere from γend to γstart.

We can verify this experimentally by simulating an initial pattern, replicating it

on a larger domain, and modeling over the resulting γ interval. For the following

models, we allowed sufficient time for the iterations to reach a steady state. Figure 5.1

shows the normal difference sum for three radii, each at γ = 100. In each case, t = 10

was sufficient, as we observed that for any value t > 10,√∑
n∈T

(un − un−1)2 < 10−3

Note that this difference norm does not imply convergence to a single value, but

rather to an oscillating steady state. This is in line with results from literature, and

consistent with the behavior of a chemical feedback loop [22, 29, 30].

We now have the tools to demonstrate pattern replication. First, we show the

results of reproducing a pattern on spheres of different radii in Figure 5.2. Using

r0 = 0.5, r1 = 1, and r2 = 2 we were able to reproduce a k2 = 20 pattern by varying γ.

Note that the results approximately align with our findings when using r1 as the

reference measurement:

γ0 = 160 ≈ 41
r2

1

r2
0

≈ 164, γ1 = 41.98 ≈ 41 γ2 = 11.098 ≈ 41
r2

1

r2
2

≈ 10.25 (5.3)

Fitting γ and r observational data to a power curve of the form γ = arb becomes

a reasonable estimate for (5.2). Figure 5.3 and Table 5.1 below show the data points

collected for the k2 = 20 pattern. Each data point was recorded based on the best fit

solution. The best fit is considered the solution value interval with the smallest range

difference from the r1 model. Such a criteria is necessary to avoid “cherry picking” our

results. We found the resulting power model to be useful:

γ = 41.06r−1.963 (5.4)

This model corresponds well with enough with (5.2) that we can proceed

confidently with simulating growth. Note that the scaling factor s is with respect to

42

measurements taken at r = 1. This model has a sum of square errors value of 3.124

with a 95% confidence interval. We can now reproduce growth on a static sphere.

(a)

(b)

Figure 5.1. Difference norms for FGF10 on spheres of radii 1, 2, and 4, with
γ = 100. (a) View of L2 norm up to t = 1. (b) Close-up showing differences
in oscillation of solutions.

43

(a) (b) (c)

Figure 5.2. Reproduction of a k2 = 20 pattern solution for FGF10 on different-
sized spheres. (a) r = 0.5 and γ = 160, (b) r = 1 and γ = 41.98, (c) r = 2
and γ = 11.10.

Figure 5.3. Simulation data fit to the power model γ = arb from x data points

Table 5.1. Experimental and Analytic γ For the k2 = 20 Pattern On Spheres
Radius 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Experimental γ 160 41.98 17.50 11.10 6.50 4.00 3.20 2.31
Analytic γ 164 41 18.22 10.25 6.56 4.56 3.90 2.56

5.2 Growing Domain Models

To model a growing domain, we use techniques similar to those which replicated

a pattern on domains of varying sizes. First, we give the starting and ending results of

the growth we wish to simulate. Figure 5.4 shows two spheres with r = 1 and r = 2,

both solved using the same parameters. Our goal is to induce the pattern from the

r = 1 sphere onto the r = 2 sphere, then compare the γ values on each.

44

(a) (b)

Figure 5.4. Starting and ending u solution patterns for growing domain sim-
ulation using α = 0.1, β = 0.9, δ = 10, and γ = 40. (a) r = 1, (b) r = 2.

Plugging in the parameters rStart = 1, γstart = 40, and rend = 2 into (5.2), we find

that the k2 = 20 pattern is replicated by using γ = 10 on the larger sphere. Now we can

compare the patterns that emerge on a sphere using γ = 40 growing from r = 1 to

r = 2 with the patterns that emerge on a sphere of radius 2 and γ = 10 to 40.

First we will solve on spheres ranging from r = 1 to r = 2 using γ = 40. Then

will partition the γ interval (10, 40) and observe the pattern found. Finally we will

compare the images side-by-side, choosing patterns that best fit near their

counterparts. Figure 5.5 at the end of this section shows the results of this comparison.

Each pair is matched with the size-γ formula from (5.2).

The results of the simulation are interesting. While the patterns have a clear

correspondence, the third and fourth have a rotational difference. The mathematical

reasoning behind the rotations is not clear, but further study may give insight into this

phenomenon. For now, we can state that pattern replication is successful. A

supplement to this thesis is a movie (sphere-movie.avi) showing the pattern evolution of

a sphere with a radius of 2 and a γ range of 0 to 100, in intervals of approximately 0.2.

It is included simply to show the smooth evolution between patterns, and how the

pattern chosen for these figures were ones that persisted through several values of γ.

45

(a) (b)

Figure 5.5. Comparison of patterns on a growing and static sphere. (a)
Patterns on a growing sphere with the radius increasing from r = 1 to r = 2,
while keeping γ constant. (b) Patterns on a static sphere with γ increasing
from γ = 10 to γ = 40, while keeping the radius constant

r = 1 r = 2

γ = 40 γ = 10

r = 1.4 r = 2

γ = 40 γ = 19.6

r = 1.6 r = 2

γ = 40 γ = 25.6

r = 1.7 r = 2

γ = 40 γ = 28.9

r = 2 r = 2

γ = 40 γ = 40

46

5.3 Lung Mesh Geometry

For the applied simulation, we created a lung mesh from confocal microscopy

images processed with Simpleware R© and edited with Blender R©. The images consisted of

88 slices from a murine lung at an E12.5 development stage, or the pseudoglandular

stage. We used a voxel depth of 4.770 microns between each slice. The volume of the

lung is approximately 3.52835cm3, which is consistent with research on mouse lung

development [6].

The discretized mesh had a default triangulated surface consisting of triangles.

Using the Catmull-Clark division routine, each triangle was sub-divided into 3

quadrilaterals for use with deal.II. Figure 5.6 shows a simple diagram of how each cell

was subdivided. During this refinement, no additional curvature was implemented, as

the complexity of the lung surface made it impractical to define a custom curved

manifold. Therefore, each group of 3 quadrilaterals (subdivided from a single triangle)

share a plane, and the error calculations remain the same regardless of mesh refinement

using this method. Despite this, simulations indicated that the mesh refinement was

adequate to get good results.

Figure 5.6. Approximate representation of how the lung mesh triangulation
surface is subdivided using the Catmull-Clark method.

−→ −→

Figure 5.7 shows the total lung mesh data from the confocal images. For this

thesis, only the surface mash data was utilized. We extracted the interior structure and

solved on the lung surface only. This mesh contains 63,604 active cells, with 254,416

degrees of freedom. While a more detailed mesh could have been extracted from the

confocal images (containing upwards of 1,000,000 cells), the analytic advantage was

minimal and the computational disadvantage was significant. No major features were

lost when converting the confocal images to a workable mesh. In fact, some noise was

removed manually to provide a smoother, more cohesive surface. The final mesh had a

maximum diameter length of 0.0435035 cm.

47

For the model simulations, we used the original mesh and 3 additional

enlargements. These enlargements were scaled by a factor of 2, 3, and 4 times the

volume from the original size. Each enlargement had the same number of cells and

degrees of freedom, and there was no refinement used. Also, the mesh was closed to

allow a smooth solution without the need for additional boundary conditions. Such

boundary conditions would likely only affect the area near the initial bronchial split. It

is reasonable to assume that the pattern formation that occurs in that area is not well

matched to biological phenomena, so we chose to negate that area from analysis and

focus more on the larger lung surface. Simulations solving the model system on the

surface of the mesh is discussed more later in this chapter.

Figure 5.7. Full view of the murine lung mesh used for this model, including
interior epithelial branch structure.

48

5.4 FGF10 Patterns on a Growing Lung

While our simulated growth model on a sphere was reasonably successful,

translating those ideas to the lung surface proves more difficult. Since we cannot

provide rigorous analytic reasoning specific to simulating a complex domain such as a

lung mesh, we must rely on our findings from studying a sphere. Based on the success

of that model, we can reasonably say that increasing the γ parameter on the lung may

approximate the effects of a growing domain. While we do not have the computational

resources to simulate patterns on the lung to the same extent as on a sphere, we can

still observe the general behavior of the model solution on a variety of domain sizes.

Initial simulations produced working results displaying an increased pattern

complexity as γ increased. The parameters α = 0.1, β = 0.9, and δ = 10 were used for

initial experimentation. Recall that u (light green) represents FGF10, while v (dark

purple) represents SHH. Table 5.2 shows the corresponding patterns for varying values

of γ on different sized meshed. Notice that while the exact pattern is not duplicated,

the number of FGF10 concentrated areas consistently increases with high γ values.

After several simulations, we were able to loosely correlate pattern replication.

Figure 5.8 shows a few examples of these similarities. Again, there were no close

pattern matches, but similar levels of pattern complexity were observed. For instance,

in the small-lung simulations, when γ = 200 on the 1x lung and γ = 75 on the 4x lung,

we see similar color blocking, with FGF10 and SHH being expressed in comparable

amounts across large areas of the lung surface.

Despite some similarities, there is not enough correlation to fit a model curve in

the same way that we did for patterns on the spheres. One reason for the discrepancy

could be that when each mesh was scaled, the origin was used as the center point,

rather than the center of the lung mesh. This might explain why it is simple to find

similar pattern complexity, yet difficult to find actual matching patterns. The position

of the mesh in Cartesian space may be the key to accurate pattern replication; yet there

may not be any discernible difference when examining the qualitative properties of the

solutions. Regardless, the amount of time and computational resources needed to

examine the influence of the mesh center in space is beyond the scope of this thesis.

Despite a lack of accurate pattern replication between lung meshed of different

sizes, simply noting that increasing γ produces pattern complexity modes similar to

that of an increasing domain is sufficient to address real-world applications. The next

chapter will compare these patterns to images of real lungs, and discuss possible uses

for our model.

49

Table 5.2. Patterns on Lungs of Varying Sizes (α = 0.1, β = 0.9, and δ = 10)

Scale a
a γ = 50

a
a γ = 500

1x

2x

3x

4x

50

(a) (b)

Figure 5.8. Pattern correlation between lungs using parameters α = 0.1, β =
0.9, and δ = 10. (a) Varying lung size from 1x to 4x volume with γ fixed at
200. (b) Fixed lung size at 4x volume with γ varying from 75 to 200.

1x vol 4x vol

γ = 200 γ = 75

2x vol 4x vol

γ = 200 γ = 100

3x vol 4x vol

γ = 200 γ = 130

4x vol 4x vol

γ = 200 γ = 200

51

CHAPTER 6

Murine Lung Applications

We have established several important ideas that validate the study of solving

the model system on the surface of the lung. The Turing analysis and eigenfunction

plots on a sphere showed that the model is well-posed. The numeric discretization

schemes for time and space were shown to be conditionally stable and able to mimic

analytic solutions. The emergence of increasingly complex patterns was preceded by

either a larger domain or a larger γ value, leading us to conclude that an increase in γ

produces pattern solutions comparable to the solutions on an increased domain. Now

we can examine empirical data on phases of lung development that correlate to the

FGF10 distribution modeled previously.

6.1 Initial Conditions
For Turing analysis, the combination of parameter values is less important than

the patterns excited, since different parameter values can excite the same pattern. We

will therefore use the same parameters that have been used for simulations throughout

the previous chapters: α = 0.1, β = 0.9, and δ = 10. As usual, we will vary γ to excite

different patterns.

It is still useful to discuss some details of the dimensionalized parameters and

their impact on the model as a whole. Recall the chemical equation and resulting

nondimensionalized γ term introduced in Sections 2.1 and 2.2:

X
k1−−⇀↽−−
k2

F 2F + S
k3−−→ 3 F Y

k4−−→ S and γ =
1

k2

We have already established that for a growing domain simulated on a static

domain, we increase γ. Note that the term γ = 1/k2 indicates that the presence of the

FGF10 precursor substrate X is decreasing with time, thus γ increases with time. This

is the expected behavior for biological system development, as growth naturally slows

and new branch development eventually halts.

6.2 Modeling Stages of Development

Finally, we reach the culmination of this work: will these simulated patterns

have relevance to real-life applications? So far we have looked at images of only one

side of the lung. To better compare results, we will now use the opposite side of the

52

lung, which has a more complex structure. First, we examine the early stages of murine

lung growth, when FGF10 accumulates at the tips of the middle and post-caval lobes.

Such gene distribution has been observed experimentally several times [18, 6, 20].

Figure 6.1a and 6.1b show both the experimental murine lung image and the lung

model simulation at an approximate development stage of E12.5, or about 12.5 days,

during the early pseudoglandular stage (this occurs at around 30 days in human

development). Our simulation shows similar FGF10 accumulation around the

post-caval lobe, but not the middle lobe. This is the development stage where rapid

growth occurs due to high concentrations of FGF10. Note that the images appear

anatomically mirrored. We believe that when forming the mesh, the stack of confocal

images may have been photographed upside-down. Rather than mirror the images, we

show the original content as-is.

By E13.5, several branching structures have formed. Figure 6.1c and 6.1d shows

the experimental and simulated results for this development period. Notice that both

images have striated distributions of FGF10 radiating outward and upward from the

main bronchial tubes. The “best match” simulation was chosen visually, with the intent

to match both the number of striations and the number of FGF10 concentrated areas

per striation.

Now we can implement our new technique to study what FGF10 distribution

may look like between E12.5 and E13.5. Although our previous simulations are not an

exact match, observing how the pattern changes may provide insight into murine lung

development. Future experimentation and more thorough simulations may provide

more relevant insight. For now, we can observe the theoretical migration of FGF10

about the surface of the lung. Figure 6.2 and 6.3 shows how varying γ changes the

surface pattern from what is observed at the E12.5 simulation to what is observed at

the E13.5 simulation. We can see the gradual increase in complexity, and such changes

inspire us to question how these concentration distributions morph and multiply. From

the images, it seems that there is a cycle of concentration areas coming together to

form striation patterns, then splitting apart again into a greater number of

concentration areas. More on this is discussed in the next section.

53

(a) (b)

(c) (d)

Figure 6.1. A comparison between experimental and simulated FGF10 dis-
tribution at E12.5 and E13.5 in the murine lung. (a) FGF10 distribution
at E12.5. Dark green indicates areas where FGF10 is more highly concen-
trated. (b) Model 2x lung at γ = 75. Green indicates FGF10 concentrated
areas. (c) FGF10 distribution at E13.5. Purple indicates areas where FGF10
is more highly concentrated. (d) Simulated 2x lung at γ = 1500. Green in-
dicates FGF10 concentrated areas. [T. Volckaert, A. Campbell, E. Dill, C.
Li, P. Minoo, and S. DeLanghe, Localized Fgf10 expression is not required
for lung branching morphogenesis but prevents differentiation of epithelial
progenitors, Development (Cambridge), 140 (2013), pp. 3731–3742.]

54

(a) γ = 50 (b) γ = 100

(c) γ = 200 (d) γ = 300

(e) γ = 400 (f) γ = 500

(g) γ = 600 (h) γ = 700

Figure 6.2. Model solutions on 2x lung meshes for γ = 50 to γ = 700

55

(a) γ = 800 (b) γ = 900

(c) γ = 1000 (d) γ = 1100

(e) γ = 1200 (f) γ = 1300

(g) γ = 1400 (h) γ = 1500

Figure 6.3. Model solutions on 2x lung meshes for γ = 800 to γ = 1500

56

6.3 Discussion of Results
While the results are interesting, we do not yet know how they may contribute

to the scientific community’s discussion on lung development. There is only a

qualitative match between simulated and experimental results, so the application to

biological development seems limited. One reason why a match to experimental results

may be difficult is the age of the domain. We have a model from E13.5, so simulating

E12.5 presents some significant differences in tissue formation. Getting a closer match

at E12.5 may not be attainable, simply because the geometry is not what we observe

during the stage of development that is being simulated.

However, there is still much to learn through more varied simulations. A

supplement to this thesis is a short movie (lung-movie.avi) containing lung images

ranging from γ = 0 to γ = 2000, in intervals of 25. The movie provides some insight

into how the surface patterns increase in complexity, but a movie with γ intervals at 1

or smaller could render a smoother visualization that would provide much insight into

this issue. Unfortunately, that is not currently computationally feasible within a

reasonable time frame.

Limitations aside, we can still suggest ideas about how branching occurs based

on FGF10 distribution. If FGF10 concentrations areas indeed merge into striations

before splitting into several more concentration areas, then we may have insight into

how lung branching is promoted. Recall that domain branching occurs during rapid

growth. Such a phase may be stimulated by a universal increase of FGF10 on the lung

surface. At first glance, it appears that simulations that show more pronounced FGF10

striations may also have FGF10 covering a greater surface area. A quantitative image

analysis would be needed to validate such a statement. The direction of the striations

may also control which direction branching occurs.

Figures 6.4 and 6.5 show a snippet of what this behavior may look like. In

Figure 6.4, the inferior lobe has a very pronounced FGF10 stripe at γ = 135. As γ

increases by 5 in each successive image, the stripe begins to distort and pinch into two

separate concentration areas. Notice that in Figure 6.5, the highlighted area, also on

the inferior lobe, shows up-down striations forming when γ = 1625 and γ = 1650, then

they gradually migrate away from one another until they are separate at γ = 1700.

More experimental data could validate or invalidate an FGF10 concentration

pattern migration like the one described above. Currently, there is no known literature

to support genetic pattern migration in this context. Hopefully, there will soon be more

research in this area to make more informed observations of results such as these.

57

(a) γ = 135 (b) γ = 145

(c) γ = 155 (d) γ = 170

Figure 6.4. Model solutions on 2x lung meshes for γ = 135 to γ = 170

58

(a) γ = 1625 (b) γ = 1650

(c) γ = 1675 (d) γ = 1700

Figure 6.5. Model solutions on 2x lung meshes for γ = 1625 to γ = 1700

59

6.4 Conclusion
FGF10 is a key regulator of epithelial lung branching. The concentration and

spatiotemporal expression of FGF10 is highly stereotyped. Wet-lab experiments have

shown that the complexity of the spatial patterning of FGF10 expressions in embryonic

lungs increase with gestational age in mice. The mechanisms that control the spatial

expression of FGF10 are not fully understood. The highly complex interactions

between different morphogens expressed in embryonic lungs hinder the understanding

of morphogen expressions during lung development.

We proposed and implemented a new method to study the spatiotemporal

expression of FGF10 at the lung surface. This involved using a system of surface

reaction-diffusion equations to describe FGF10 interactions with SHH at the lung

surface. Finite element simulations of the model equations on lung geometries of

embryonic mice produced FGF10 patterning that are consistent with those reported in

the literature.

We simulated FGF10 expression on lung geometries of mice at different stages of

embryonic development, with all the model parameters held fixed. We found that the

lung surface area increases with lung size and gestational age. Simulation results on

smaller lungs produced minimal patterns, and the complexity of the simulated patterns

increased with lung size. Therefore, the simulation results identified the lung surface

area as a very important regulator of the spatial expression of FGF10.

Future work might involve expanding the model to investigate the dynamic

interactions between FGF10 expression at the lung surface and SHH expression at the

lung epithelium. This would further improve our understanding of the formation of the

lung epithelial structures and highlight potential avenues that should be explored to

increase the rate of epithelial branching in underdeveloped fetal lungs.

60

BIBLIOGRAPHY

[1] How children’s lungs grow, British Lung Foundation, https://www.blf.org.uk,
Accessed: 2020-02-13 (2019).

[2] P. Arbenz, Lecture notes for Introduction to finite elements and sparse linear
system solving, September 2017.

[3] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V.
Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier,
P. Munch, J.-P. Pelteret, R. Rastak, I. Thomas, B. Turcksin,
Z. Wang, and D. Wells, The deal.ii library, version 9.0, submitted, (2020).

[4] D. N. Arnold, Stability, Consistency, and Convergence: A 21st Century
Viewpoint, in Feng Kang Distinguished Lecture, 2009.

[5] R. Barreira, C. M. Elliott, and A. Madzvamuse, The surface finite
element method for pattern formation on evolving biological surfaces, Journal of
Mathematical Biology, 63 (2011), pp. 1095–1119.

[6] S. Bellusci, J. Grindley, H. Emoto, N. Itoh, and B. L. Hogan,
Fibroblast Growth Factor 10 (FGF10) and branching morphogenesis in the
embryonic mouse lung, Development, 124 (1997), pp. 4867–4878.

[7] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Geometrically Consistent
Mesh Modification, SIAM Journal on Numerical Analysis, 48 (2010),
pp. 1877–1899.

[8] M. J. Cook, The Anatomy of the Laboratory Mouse, Academic Press, 1965.

[9] G. Dziuk and C. M. Elliott, Surface finite elements for parabolic equations,
Technical Report 4, 2007.

[10] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta
Numerica, 22 (2013), pp. 289–396.

[11] C. M. Elliott, B. Stinner, V. Styles, and R. Welford, Numerical
computation of advection and diffusion on evolving diffuse interfaces, IMA Journal
of Numerical Analysis, 31 (2011), pp. 786–812.

[12] C. Frye and C. J. Efthimiou, Spherical Harmonics in p Dimensions, (2012),
p. 87.

[13] U. George and S. Lubkin, Tissue geometry may govern lung branching mode
selection, Journal of Theoretical Biology, (2018).

[14] A. Gierer and H. Meinhardt, A Theory of Biological Pattern Formation,
Kybernetik, 12 (1972), pp. 30–39.

[15] D. L. Hartl and E. W. Jones, Genetics: Principles and Analysis, Jones and
Bartlett, Sudbury, Massachusetts, fourth ed., 1998.

61

[16] M. Herriges and E. E. Morrisey, Lung development: Orchestrating the
generation and regeneration of a complex organ, Development (Cambridge), 141
(2014), pp. 502–513.

[17] A. L. Krause, A. M. Burton, N. T. Fadai, and R. A. Van Gorder,
Emergent Structures in Reaction-Advection-Diffusion Systems On a Sphere,
technical report, 2018.

[18] A. Lazarus, P. M. Del-Moral, O. Ilovich, E. Mishani, D. Warburton,
and E. Keshet, A perfusion-independent role of blood vessels in determining
branching stereotypy of lung airways, Development, 138 (2011), pp. 2359–2368.

[19] J. Lee and W. Sung, Emergence and Evolution of Patterns, technical report,
2000.

[20] J. Lü, K. I. Izvolsky, J. Qian, and W. V. Cardoso, Identification of
FGF10 targets in the embryonic lung epithelium during bud morphogenesis,
Journal of Biological Chemistry, 280 (2005), pp. 4834–4841.

[21] A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied
to reaction–diffusion systems on fixed and growing domains, Journal of
Computational Physics, 214 (2006), pp. 239–263.

[22] A. Madzvamuse, A. H. W. Chung, and C. Venkataraman, Stability
analysis and simulations of coupled bulk-surface reaction–diffusion systems,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 471 (2015), p. 20140546.

[23] D. McCulley, M. Wienhold, and X. Sun, The pulmonary mesenchyme
directs lung development, jun 2015.

[24] R. J. Metzger, O. D. Klein, G. R. Martin, and M. A. Krasnow, The
branching programme of mouse lung development, Nature, 453 (2008), pp. 745–750.

[25] E. E. Morrisey, W. V. Cardoso, R. H. Lane, M. Rabinovitch, S. H.
Abman, X. Ai, K. H. Albertine, R. D. Bland, H. A. Chapman,
W. Checkley, J. A. Epstein, C. R. Kintner, M. Kumar, P. Minoo,
T. J. Mariani, D. M. McDonald, Y. S. Mukouyama, L. S. Prince,
J. Reese, J. Rossant, W. Shi, X. Sun, Z. Werb, J. A. Whitsett,
D. Gail, C. J. Blaisdell, and Q. S. Lin, Molecular determinants of lung
development, in Annals of the American Thoracic Society, vol. 10, apr 2013.

[26] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical
Applications, Springer, third ed., 2000.

[27] C. V. Pepicelli, P. M. Lewis, and A. P. McMahon, Sonic hedgehog
regulates branching morphogenesis in the mammalian lung, Current Biology, 8
(1998), pp. 1083–1086.

[28] M. Roth-Kleiner and M. Post, Genetic Control of Lung Development,
Neonatology, 84 (2003), pp. 83–88.

62

[29] W. Sarfaraz and A. Madzvamuse, Classification of parameter spaces for a
reaction-diffusion model on stationary domains, Chaos, Solitons and Fractals, 103
(2017), pp. 33–51.

[30] W. Sarfaraz and A. Madzvamuse, Domain-dependent stability analysis and
parameter classification of a reaction-diffusion model on spherical geometries,
European Journal of Applied Mathematics, (2018).

[31] J. C. Schittny, Development of the lung, Cell and Tissue Research, 367 (2017),
pp. 427–444.

[32] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour,
Journal of Theoretical Biology, 81 (1979), pp. 389–400.

[33] C. Schnatwinkel and L. Niswander, Multiparametric image analysis of
lung-branching morphogenesis, Developmental Dynamics, 242 (2013), pp. 622–637.

[34] E. Tadmor, A review of numerical methods for nonlinear partial differential
equations, Bulletin of the American Mathematical Society, 49 (2012), pp. 507–554.

[35] J. M. Tordera, Spherical harmonics, MathWorks MATLAB R©, (2020).

[36] A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical Transactions
of the Royal Society of London, 237 (1952), pp. 37–72.

[37] M. Unbekandt, P. M. del Moral, F. G. Sala, S. Bellusci,
D. Warburton, and V. Fleury, Tracheal occlusion increases the rate of
epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2
pathway, Mechanisms of Development, 125 (2008), pp. 314–324.

[38] C. Varea, J. L. Aragó, and R. A. Barrio, Turing patterns on a sphere,
Physical Review, 60 (1999), pp. 4588–4592.

[39] D. Warburton, A. El-Hashash, G. Carraro, C. Tiozzo, F. Sala,
O. Rogers, S. D. Langhe, P. J. Kemp, D. Riccardi, J. Torday,
S. Bellusci, W. Shi, S. R. Lubkin, and E. Jesudason, Lung Organogenesis,
vol. 27, 2010, pp. 73–158.

63

APPENDIX

C++ Code Using deal.ii

64

C++ Code Using deal.ii

1 #include <deal.II/base/utilities.h>

2 #include <deal.II/base/quadrature_lib.h>

3 #include <deal.II/base/function.h>

4 #include <deal.II/base/logstream.h>

5

6 #include <deal.II/lac/vector.h>

7 #include <deal.II/lac/full_matrix.h>

8 #include <deal.II/lac/dynamic_sparsity_pattern.h>

9 #include <deal.II/lac/sparse_matrix.h>

10 #include <deal.II/lac/solver_cg.h>

11 #include <deal.II/lac/solver_control.h>

12 #include <deal.II/lac/precondition.h>

13 #include <deal.II/lac/affine_constraints.h>

14

15 #include <deal.II/grid/tria.h>

16 #include <deal.II/grid/manifold_lib.h>

17 #include <deal.II/grid/grid_refinement.h>

18 #include <deal.II/grid/grid_out.h>

19 #include <deal.II/grid/grid_in.h>

20 #include <deal.II/grid/tria_accessor.h>

21 #include <deal.II/grid/tria_iterator.h>

22

23 #include <deal.II/dofs/dof_handler.h>

24 #include <deal.II/dofs/dof_accessor.h>

25 #include <deal.II/dofs/dof_tools.h>

26

27 #include <deal.II/fe/fe_q.h>

28 #include <deal.II/fe/fe_values.h>

29 #include <deal.II/fe/mapping_q.h>

30

31 #include <deal.II/numerics/data_out.h>

32 #include <deal.II/numerics/vector_tools.h>

33 #include <deal.II/numerics/matrix_tools.h>

34

35 #include <fstream >

65

36 #include <iostream >

37 #include <cstdlib >

38 #include <math.h>

39

40

41 namespace Schnakenberg

42 {

43 using namespace dealii;

44

45 double epsilon = 0.1;

46 double alpha = 0.1;

47 double beta = 0.9;

48

49 double delta = 10.0;

50 double gamma = 300.0;

51

52 template <int spacedim >

53 class ReactionDiffusionEquation

54 {

55 public:

56 ReactionDiffusionEquation

57 (const unsigned degree = 2);

58 void run ();

59

60 private:

61 static constexpr unsigned int dim = spacedim - 1;

62

63 void setup_system ();

64 void assemble_surface ();

65 void solve_time_step_U ();

66 void solve_time_step_V ();

67 void calculate_norm ();

68 void output_results(std:: string) const;

69 void compute_error () const;

70

71 Triangulation <dim , spacedim > triangulation;

72 FE_Q <dim , spacedim > fe;

73 DoFHandler <dim , spacedim > dof_handler;

66

74 MappingQ <dim , spacedim > mapping;

75

76 AffineConstraints <double > constraints;

77

78 SparsityPattern sparsity_pattern;

79 SparseMatrix <double > mass_matrix;

80 SparseMatrix <double > laplace_matrix;

81 SparseMatrix <double > system_matrix_u ,

82 system_matrix_v;

83

84 Vector <double > solution_u , solution_v;

85 Vector <double > exact_u , exact_v;

86 Vector <double > old_solution_u , old_solution_v;

87 Vector <double > system_rhs_u , system_rhs_v;

88 Vector <double > u_squared_v;

89 Vector <double > normal_u , normal_v;

90 Vector <double > forcing_terms;

91

92 double time;

93 double time_step;

94 unsigned int timestep_number;

95

96 unsigned int skip_step;

97

98 std:: ofstream printfile;

99 };

100

101

102

103 template <int dim >

104 class InitialValues_U : public Function <dim >

105 {

106 public:

107 InitialValues_U () : Function <dim >() {}

108

109 virtual double value (const Point <dim > &p,

110 const unsigned int component = 0) const;

111 };

67

112

113 template <>

114 double InitialValues_U <3>:: value (const Point <3> &p,

115 const unsigned int) const

116 {

117 using numbers ::PI;

118 double sum = 0;

119

120 for(unsigned int i=1; i<9; i++)

121 {

122 sum += std::cos (2*PI*i*p[0]*p[1]+p[2]);

123 }

124

125 return (alpha + beta + epsilon*sum);

126 }

127

128 template <int dim >

129 class InitialValues_V : public Function <dim >

130 {

131 public:

132 InitialValues_V () : Function <dim >() {}

133

134 virtual double value (const Point <dim > &p,

135 const unsigned int component = 0) const;

136 };

137

138 template <>

139 double InitialValues_V <3>:: value (const Point <3> &p,

140 const unsigned int) const

141 {

142 using numbers ::PI;

143 double sum = 0;

144

145 for(unsigned int i=1; i<9; i++)

146 {

147 sum += std::cos (2*PI*i*p[0]*p[1]+p[2]);

148 }

149

68

150 return (beta / std::pow(alpha+beta ,2) + epsilon*sum);

151 }

152

153

154

155 template <int dim >

156 class RightHandSide : public Function <dim >

157 {

158 public:

159 RightHandSide () : Function <dim >() {}

160

161 virtual double value(const Point <dim > &p,

162 const unsigned int component = 0) const override;

163 };

164

165 template <>

166 double RightHandSide <3>:: value(const Point <3> &p,

167 const unsigned int) const

168 {

169 return 1;

170 }

171

172

173

174 template <int spacedim >

175 ReactionDiffusionEquation <spacedim >::

176 ReactionDiffusionEquation(const unsigned degree):

177 fe(degree),

178 dof_handler(triangulation),

179 mapping(degree),

180 time (0.0),

181 time_step (1.0 / 1000.0) ,

182 timestep_number (0),

183 skip_step (100)

184 {}

185

186

187

69

188 template <int spacedim >

189 void ReactionDiffusionEquation <spacedim >:: setup_system ()

190 {

191 //// Shape Definition ////

192

193 std:: string import_name =

194 "./ models/final -positive -1x.obj";

195 GridIn <dim , spacedim > grid_in;

196

197 grid_in.attach_triangulation(triangulation);

198 grid_in.read_assimp(import_name , -1, true);

199

200 //// Degrees of Freedom ////

201

202 dof_handler.distribute_dofs(fe);

203

204 std::cout << std::endl << "Number of active cells: "

205 << triangulation.n_active_cells () << std::endl

206 << "Number of degrees of freedom: "

207 << dof_handler.n_dofs () << std::endl;

208

209 constraints.clear ();

210 DoFTools :: make_hanging_node_constraints(

211 dof_handler , constraints);

212 constraints.close ();

213

214 //// Sparsity Pattern ////

215

216 DynamicSparsityPattern dsp(dof_handler.n_dofs ());

217 DoFTools :: make_sparsity_pattern(dof_handler ,

218 dsp ,

219 constraints ,

220 true);

221 sparsity_pattern.copy_from(dsp);

222

223 mass_matrix.reinit(sparsity_pattern);

224 laplace_matrix.reinit(sparsity_pattern);

225

70

226 system_matrix_u.reinit(sparsity_pattern);

227 system_matrix_v.reinit(sparsity_pattern);

228

229 MatrixCreator :: create_mass_matrix(dof_handler ,

230 QGauss <dim >(fe.degree +1),

231 mass_matrix);

232 MatrixCreator :: create_laplace_matrix(dof_handler ,

233 QGauss <dim >(fe.degree +1),

234 laplace_matrix);

235

236 solution_u.reinit(dof_handler.n_dofs ());

237 solution_v.reinit(dof_handler.n_dofs ());

238

239 old_solution_u.reinit(dof_handler.n_dofs ());

240 old_solution_v.reinit(dof_handler.n_dofs ());

241

242 system_rhs_u.reinit(dof_handler.n_dofs ());

243 system_rhs_v.reinit(dof_handler.n_dofs ());

244

245 u_squared_v.reinit(dof_handler.n_dofs ());

246 normal_u.reinit(dof_handler.n_dofs ());

247 normal_v.reinit(dof_handler.n_dofs ());

248

249 forcing_terms.reinit(solution_u.size ());

250 }

251

252

253 //// Surface Assembly ////

254

255 template <int spacedim >

256 void ReactionDiffusionEquation <spacedim >:: assemble_surface ()

257 {

258 system_matrix_u = 0;

259 system_matrix_v = 0;

260 system_rhs_u = 0;

261 system_rhs_v = 0;

262

263 const QGauss <dim > quadrature_formula (2 * fe.degree);

71

264 FEValues <dim , spacedim > fe_values(mapping ,

265 fe,

266 quadrature_formula ,

267 update_values |

268 update_gradients |

269 update_quadrature_points |

270 update_JxW_values);

271

272 const unsigned int dofs_per_cell = fe.dofs_per_cell;

273 const unsigned int n_q_points =

274 quadrature_formula.size ();

275

276 FullMatrix <double > cell_matrix(

277 dofs_per_cell , dofs_per_cell);

278 Vector <double > cell_rhs(dofs_per_cell);

279

280 std::vector <double >

281 rhs_values(n_q_points);

282 std::vector <types:: global_dof_index >

283 local_dof_indices(dofs_per_cell);

284

285 const RightHandSide <spacedim > rhs_function;

286

287 for (const auto &cell :

288 dof_handler.active_cell_iterators ())

289 {

290 cell_matrix = 0;

291 cell_rhs = 0;

292

293 fe_values.reinit(cell);

294

295 rhs_function.value_list(fe_values.get_quadrature_points (),

296 rhs_values);

297

298 for (unsigned int i = 0; i < dofs_per_cell; ++i)

299 for (unsigned int j = 0; j < dofs_per_cell; ++j)

300 for (unsigned int q_point = 0;

301 q_point < n_q_points; ++ q_point)

72

302 cell_matrix(i, j) +=

303 fe_values.shape_grad(i, q_point) *

304 fe_values.shape_grad(j, q_point) *

305 fe_values.JxW(q_point);

306

307 for (unsigned int i = 0; i < dofs_per_cell; ++i)

308 for (unsigned int q_point = 0;

309 q_point < n_q_points;

310 ++ q_point)

311 cell_rhs(i) +=

312 fe_values.shape_value(i, q_point) *

313 rhs_values[q_point] *

314 f e_values.JxW(q_point);

315

316 cell ->get_dof_indices(local_dof_indices);

317 for (unsigned int i = 0; i < dofs_per_cell; ++i)

318 {

319 for (unsigned int j = 0; j < dofs_per_cell; ++j)

320 system_matrix_u.add(local_dof_indices[i],

321 local_dof_indices[j],

322 cell_matrix(i, j));

323 system_rhs_u(local_dof_indices[i]) +=

324 cell_rhs(i);

325 system_rhs_v(local_dof_indices[i]) +=

326 cell_rhs(i);

327 }

328 }

329

330 system_matrix_v.copy_from(system_matrix_u);

331 system_rhs_v=system_rhs_u;

332

333 std::map <types:: global_dof_index , double >

334 boundary_values;

335 VectorTools :: interpolate_boundary_values(

336 mapping , dof_handler , 0,

337 Functions :: ZeroFunction <spacedim >(),

338 boundary_values);

339

73

340 MatrixTools :: apply_boundary_values(boundary_values ,

341 system_matrix_u ,

342 solution_u ,

343 system_rhs_u ,

344 false);

345

346 MatrixTools :: apply_boundary_values(boundary_values ,

347 system_matrix_v ,

348 solution_v ,

349 system_rhs_v ,

350 false);

351 }

352

353

354 //// Solve Timestep ////

355 template <int spacedim >

356 void ReactionDiffusionEquation <spacedim >:: solve_time_step_U ()

357 {

358 SolverControl solver_control (10000 ,

359 1e-20 * system_rhs_u.l2_norm ());

360 SolverCG <> cg(solver_control);

361

362 PreconditionSSOR <> preconditioner;

363 preconditioner.initialize(system_matrix_u , 1.0);

364

365 cg.solve(system_matrix_u ,

366 solution_u ,

367 system_rhs_u ,

368 preconditioner);

369

370 constraints.distribute(solution_u);

371 }

372

373

374

375 template <int spacedim >

376 void ReactionDiffusionEquation <spacedim >:: solve_time_step_V ()

377 {

74

378 SolverControl solver_control (10000 ,

379 1e-20 * system_rhs_v.l2_norm ());

380 SolverCG <> cg(solver_control);

381

382 PreconditionSSOR <> preconditioner;

383 preconditioner.initialize(system_matrix_v , 1.0);

384

385 cg.solve(system_matrix_v ,

386 solution_v ,

387 system_rhs_v ,

388 preconditioner);

389

390 constraints.distribute(solution_v);

391 }

392

393

394

395 template <int dim >

396 void ReactionDiffusionEquation <dim >:: calculate_norm ()

397 {

398 double norm_u = 0;

399 double norm_v = 0;

400 normal_u = solution_u;

401 normal_u.add(-1, old_solution_u);

402 normal_v = solution_v;

403 normal_v.add(-1, old_solution_v);

404

405 for(unsigned int i = 0; i < normal_u.size (); i++)

406 {

407 norm_u += std::pow(normal_u[i],2);

408 norm_v += std::pow(normal_v[i],2);

409 }

410

411 norm_u = std::pow(norm_u , 0.5);

412 norm_v = std::pow(norm_v , 0.5);

413 printfile << timestep_number << ","

414 << norm_u << ","

415 << norm_v << "\n";

75

416 }

417

418

419 //// Output Solution ////

420

421 template <int spacedim >

422 void ReactionDiffusionEquation <spacedim >::

423 output_results(std:: string gamma_string) const

424 {

425 DataOut <dim , DoFHandler <dim , spacedim >> data_out;

426

427 data_out.attach_dof_handler(dof_handler);

428 data_out.add_data_vector(solution_u , "U",

429 DataOut <dim ,

430 DoFHandler <dim ,

431 spacedim >>:: type_dof_data);

432 data_out.add_data_vector(solution_v , "V",

433 DataOut <dim ,

434 DoFHandler <dim ,

435 spacedim >>:: type_dof_data);

436 data_out.build_patches(mapping , mapping.get_degree ());

437

438 const std:: string image_filename =

439 "./ solutions/lung -1x-g-" +

440 gamma_string +

441 Utilities :: int_to_string(

442 timestep_number/skip_step , 3) +

443 ".vtk";

444 std:: ofstream output(image_filename);

445 data_out.write_vtk(output);

446 }

447

448

449

450 template <int spacedim >

451 void ReactionDiffusionEquation <spacedim >:: run()

452 {

453 setup_system ();

76

454 assemble_surface ();

455

456 double gamma_whole = std:: floor(gamma);

457 double gamma_decim = std:: floor((gamma -

458 gamma_whole)*1000);

459 std:: ostringstream g_object;

460 g_object << std::setw (3) << std:: setfill(’0’)

461 << gamma_whole

462 << std::setw (3) << std:: setfill(’0’)

463 << gamma_decim;

464 std:: string gamma_string = g_object.str();

465

466 std:: string norm_filename =

467 "./lung -solutions/lung -norm -1x-" +

468 gamma_string + ".csv";

469 printfile.open(norm_filename);

470 printfile << "0,0,0\n";

471

472 std::map <types:: global_dof_index , double > boundary_values;

473 VectorTools :: interpolate_boundary_values(mapping ,

474 dof_handler ,

475 999,

476 Functions :: ZeroFunction <spacedim >(),

477 boundary_values);

478

479 Vector <double > tmp;

480 tmp.reinit(solution_u.size ());

481

482 VectorTools :: interpolate(dof_handler ,

483 InitialValues_U <spacedim >(),

484 old_solution_u);

485

486 VectorTools :: interpolate(dof_handler ,

487 InitialValues_V <spacedim >(),

488 old_solution_v);

489

490 solution_u = old_solution_u;

491 solution_v = old_solution_v;

77

492

493 std::cout << "t = " << time << std::endl;

494

495 output_results(gamma_string);

496

497 while (time <= 10)

498 {

499

500 time += time_step;

501 ++ timestep_number;

502

503 if (timestep_number % skip_step == 0)

504 std::cout << "t=" << time << std::endl;

505

506 //// System Assembly ////

507

508 // forcing_terms = gamma

509 RightHandSide <spacedim > rhs_function;

510 VectorTools :: create_right_hand_side(mapping ,

511 dof_handler ,

512 QGauss <dim >(fe.degree + 1),

513 rhs_function ,

514 forcing_terms ,

515 constraints);

516 forcing_terms *= gamma;

517

518

519 // u_squared_v = u^2*v

520 std:: transform(old_solution_u.begin(),

521 old_solution_u.end(),

522 old_solution_u.begin(),

523 tmp.begin(),

524 std:: multiplies <double >());

525 std:: transform(tmp.begin(),

526 tmp.end(),

527 old_solution_v.begin(),

528 u_squared_v.begin(),

529 std:: multiplies <double >());

78

530

531 // system_rhs_u = k*gamma*(alpha*F - M*U_{n-1} +

532 // M*U_{n-1}*U_{n-1}*V_{n-1}) + M*U_{n-1}

533 system_rhs_u = forcing_terms;

534 system_rhs_u *= time_step*alpha;

535 mass_matrix.vmult(tmp , old_solution_u);

536 system_rhs_u.add(1- time_step*gamma , tmp);

537 mass_matrix.vmult(tmp , u_squared_v);

538 system_rhs_u.add(time_step*gamma , tmp);

539

540 // system_matrix_u = M + k*A

541 system_matrix_u.copy_from(mass_matrix);

542 system_matrix_u.add(time_step , laplace_matrix);

543

544 constraints.condense(system_matrix_u , system_rhs_u);

545

546 MatrixTools :: apply_boundary_values(boundary_values ,

547 system_matrix_u ,

548 solution_u ,

549 system_rhs_u);

550

551 solve_time_step_U ();

552

553 // u_squared_v = u^2*v (again)

554 std:: transform(solution_u.begin(),

555 solution_u.end(),

556 solution_u.begin(),

557 tmp.begin(),

558 std:: multiplies <double >());

559 std:: transform(tmp.begin(),

560 tmp.end(),

561 old_solution_v.begin(),

562 u_squared_v.begin(),

563 std:: multiplies <double >());

564

565 // system_rhs_v = k*gamma*(beta*F -

566 // M*U_{n}*U_{n}*V_{n -1})+ M*V_{n-1}

567 system_rhs_v = forcing_terms;

79

568 system_rhs_v *= time_step*beta;

569 mass_matrix.vmult(tmp , old_solution_v);

570 system_rhs_v.add(1, tmp);

571 mass_matrix.vmult(tmp , u_squared_v);

572 system_rhs_v.add(-time_step*gamma , tmp);

573

574 // system_matrix_v = M + d*k*A

575 system_matrix_v.copy_from(mass_matrix);

576 system_matrix_v.add(time_step*delta , laplace_matrix);

577

578

579 constraints.condense(system_matrix_v , system_rhs_v);

580 MatrixTools :: apply_boundary_values(

581 -boundary_values ,

582 system_matrix_v ,

583 solution_v ,

584 system_rhs_v);

585 solve_time_step_V ();

586

587 if (timestep_number % skip_step == 0)

588 output_results(gamma_string);

589

590 calculate_norm ();

591 old_solution_u = solution_u;

592 old_solution_v = solution_v;

593 }

594 }

595 }

596

597 int main()

598 {

599 using namespace dealii;

600 using namespace Schnakenberg;

601 ReactionDiffusionEquation <3> rd_equation_solver;

602 rd_equation_solver.run();

603

604 return 0;

605 }

